Add spleen segmentation app with MONAI model
Browse files
app.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import nibabel as nib
|
| 5 |
+
import numpy as np
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from monai.transforms import (
|
| 8 |
+
Compose,
|
| 9 |
+
LoadImage,
|
| 10 |
+
EnsureChannelFirst,
|
| 11 |
+
ScaleIntensity,
|
| 12 |
+
Resize,
|
| 13 |
+
AsDiscrete,
|
| 14 |
+
)
|
| 15 |
+
from monai.networks.nets import UNet
|
| 16 |
+
import tempfile
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
# Load the model
|
| 20 |
+
model = None
|
| 21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
|
| 23 |
+
def load_model():
|
| 24 |
+
global model
|
| 25 |
+
if model is None:
|
| 26 |
+
# Download model from HuggingFace
|
| 27 |
+
model_path = hf_hub_download(
|
| 28 |
+
repo_id="MONAI/example_spleen_segmentation",
|
| 29 |
+
filename="models/model.pt"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Initialize UNet architecture
|
| 33 |
+
model = UNet(
|
| 34 |
+
spatial_dims=3,
|
| 35 |
+
in_channels=1,
|
| 36 |
+
out_channels=2,
|
| 37 |
+
channels=(16, 32, 64, 128, 256),
|
| 38 |
+
strides=(2, 2, 2, 2),
|
| 39 |
+
num_res_units=2,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Load weights
|
| 43 |
+
checkpoint = torch.load(model_path, map_location=device)
|
| 44 |
+
model.load_state_dict(checkpoint)
|
| 45 |
+
model.to(device)
|
| 46 |
+
model.eval()
|
| 47 |
+
return model
|
| 48 |
+
|
| 49 |
+
@spaces.GPU
|
| 50 |
+
def segment_spleen(input_file):
|
| 51 |
+
"""Segment spleen from CT NIfTI file"""
|
| 52 |
+
try:
|
| 53 |
+
# Load model
|
| 54 |
+
net = load_model()
|
| 55 |
+
|
| 56 |
+
# Load NIfTI file
|
| 57 |
+
img = nib.load(input_file)
|
| 58 |
+
img_data = img.get_fdata()
|
| 59 |
+
|
| 60 |
+
# Preprocessing
|
| 61 |
+
img_tensor = torch.from_numpy(img_data).float().unsqueeze(0).unsqueeze(0)
|
| 62 |
+
|
| 63 |
+
# Normalize
|
| 64 |
+
img_tensor = (img_tensor - img_tensor.min()) / (img_tensor.max() - img_tensor.min())
|
| 65 |
+
|
| 66 |
+
# Resize to model input size (96x96x96)
|
| 67 |
+
img_resized = torch.nn.functional.interpolate(
|
| 68 |
+
img_tensor,
|
| 69 |
+
size=(96, 96, 96),
|
| 70 |
+
mode="trilinear",
|
| 71 |
+
align_corners=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Move to device and run inference
|
| 75 |
+
img_resized = img_resized.to(device)
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
output = net(img_resized)
|
| 79 |
+
pred = torch.argmax(output, dim=1)
|
| 80 |
+
|
| 81 |
+
# Resize back to original size
|
| 82 |
+
pred_resized = torch.nn.functional.interpolate(
|
| 83 |
+
pred.float().unsqueeze(0),
|
| 84 |
+
size=img_data.shape,
|
| 85 |
+
mode="nearest"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
pred_np = pred_resized.squeeze().cpu().numpy().astype(np.uint8)
|
| 89 |
+
|
| 90 |
+
# Save segmentation as NIfTI
|
| 91 |
+
seg_img = nib.Nifti1Image(pred_np, img.affine, img.header)
|
| 92 |
+
output_path = tempfile.mktemp(suffix="_segmentation.nii.gz")
|
| 93 |
+
nib.save(seg_img, output_path)
|
| 94 |
+
|
| 95 |
+
# Create visualization (middle slice)
|
| 96 |
+
mid_slice = img_data.shape[2] // 2
|
| 97 |
+
img_slice = img_data[:, :, mid_slice]
|
| 98 |
+
seg_slice = pred_np[:, :, mid_slice]
|
| 99 |
+
|
| 100 |
+
# Normalize image for display
|
| 101 |
+
img_slice = (img_slice - img_slice.min()) / (img_slice.max() - img_slice.min()) * 255
|
| 102 |
+
|
| 103 |
+
# Create overlay
|
| 104 |
+
overlay = np.stack([img_slice, img_slice, img_slice], axis=-1).astype(np.uint8)
|
| 105 |
+
overlay[seg_slice == 1] = [255, 0, 0] # Red for spleen
|
| 106 |
+
|
| 107 |
+
return overlay, output_path, "Segmentation completed successfully!"
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return None, None, f"Error: {str(e)}"
|
| 111 |
+
|
| 112 |
+
# Create Gradio interface
|
| 113 |
+
with gr.Blocks(title="Spleen Segmentation") as demo:
|
| 114 |
+
gr.Markdown("# 🏥 CT Spleen Segmentation")
|
| 115 |
+
gr.Markdown(
|
| 116 |
+
"""Upload a CT scan in NIfTI format (.nii or .nii.gz) to segment the spleen using the
|
| 117 |
+
[MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.
|
| 118 |
+
|
| 119 |
+
**Model Info:**
|
| 120 |
+
- Architecture: UNet
|
| 121 |
+
- Input: 3D CT image (96×96×96)
|
| 122 |
+
- Output: Binary segmentation (spleen vs background)
|
| 123 |
+
- Mean Dice Score: 0.96
|
| 124 |
+
|
| 125 |
+
**Instructions:**
|
| 126 |
+
1. Upload a NIfTI file (.nii or .nii.gz)
|
| 127 |
+
2. Click Submit
|
| 128 |
+
3. View the segmentation overlay and download the result
|
| 129 |
+
"""
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
with gr.Row():
|
| 133 |
+
with gr.Column():
|
| 134 |
+
input_file = gr.File(
|
| 135 |
+
label="Upload CT Scan (NIfTI format)",
|
| 136 |
+
file_types=[".nii", ".nii.gz"]
|
| 137 |
+
)
|
| 138 |
+
submit_btn = gr.Button("Segment Spleen", variant="primary")
|
| 139 |
+
|
| 140 |
+
with gr.Column():
|
| 141 |
+
output_image = gr.Image(label="Segmentation Overlay (Middle Slice)", type="numpy")
|
| 142 |
+
output_file = gr.File(label="Download Segmentation")
|
| 143 |
+
status_text = gr.Textbox(label="Status")
|
| 144 |
+
|
| 145 |
+
submit_btn.click(
|
| 146 |
+
fn=segment_spleen,
|
| 147 |
+
inputs=[input_file],
|
| 148 |
+
outputs=[output_image, output_file, status_text]
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
gr.Markdown(
|
| 152 |
+
"""### Requirements
|
| 153 |
+
- MONAI
|
| 154 |
+
- PyTorch
|
| 155 |
+
- nibabel
|
| 156 |
+
- numpy
|
| 157 |
+
- huggingface_hub
|
| 158 |
+
|
| 159 |
+
### Citation
|
| 160 |
+
If you use this model, please cite:
|
| 161 |
+
```
|
| 162 |
+
Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training."
|
| 163 |
+
arXiv preprint arXiv:1811.12506 (2018).
|
| 164 |
+
```
|
| 165 |
+
"""
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
demo.launch()
|