Update README with model link and documentation
Browse files
README.md
CHANGED
|
@@ -1,13 +1,53 @@
|
|
| 1 |
---
|
| 2 |
title: Spleen Segmentation Demo
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.47.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
short_description:
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Spleen Segmentation Demo
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.47.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
short_description: 3D spleen segmentation with MONAI
|
| 11 |
+
models:
|
| 12 |
+
- MONAI/example_spleen_segmentation
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# CT Spleen Segmentation Demo
|
| 16 |
+
|
| 17 |
+
This Space demonstrates 3D spleen segmentation from CT scans using the [MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.
|
| 18 |
+
|
| 19 |
+
## Model Information
|
| 20 |
+
|
| 21 |
+
- **Architecture**: UNet
|
| 22 |
+
- **Input**: 3D CT images (96×96×96)
|
| 23 |
+
- **Output**: Binary segmentation (spleen vs background)
|
| 24 |
+
- **Performance**: Mean Dice Score = 0.96
|
| 25 |
+
- **Training**: Trained on Medical Segmentation Decathlon Challenge 2018 dataset
|
| 26 |
+
|
| 27 |
+
## How to Use
|
| 28 |
+
|
| 29 |
+
1. Upload a CT scan in NIfTI format (.nii or .nii.gz)
|
| 30 |
+
2. Click "Segment Spleen"
|
| 31 |
+
3. View the segmentation overlay (middle slice visualization)
|
| 32 |
+
4. Download the full 3D segmentation
|
| 33 |
+
|
| 34 |
+
## Requirements
|
| 35 |
+
|
| 36 |
+
- MONAI
|
| 37 |
+
- PyTorch
|
| 38 |
+
- nibabel
|
| 39 |
+
- numpy
|
| 40 |
+
- huggingface_hub
|
| 41 |
+
|
| 42 |
+
## Citation
|
| 43 |
+
|
| 44 |
+
If you use this model, please cite:
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training."
|
| 48 |
+
arXiv preprint arXiv:1811.12506 (2018).
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Disclaimer
|
| 52 |
+
|
| 53 |
+
This is an example demonstration, not to be used for diagnostic purposes.
|