Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from transformers import pipeline | |
| # # Initialize the pipeline with the image-to-text model | |
| # model_path = "Salesforce/blip-image-captioning-base" | |
| # if not os.path.exists(model_path): | |
| # raise FileNotFoundError(f"Model path {model_path} does not exist. Please provide a valid path.") | |
| # Initialize the image-to-text pipeline with the specified model | |
| pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
| #pipe = pipeline("image-to-text", model=model_path) | |
| def launch(input): | |
| """ | |
| Function to generate image caption. | |
| Args: | |
| input (PIL.Image): Input image for captioning. | |
| Returns: | |
| str: Generated caption for the input image. | |
| """ | |
| out = pipe(input) | |
| return out[0]['generated_text'] | |
| # Create a Gradio interface for the image-to-text pipeline | |
| iface = gr.Interface( | |
| fn=launch, # Function to generate captions | |
| inputs=gr.Image(type='pil'), # Input type: Image (PIL format) | |
| outputs="text" # Output type: Text | |
| ) | |
| # Launch the Gradio interface | |
| iface.launch() | |