Spaces:
Runtime error
Runtime error
Commit
·
5d9145f
1
Parent(s):
65757ca
Update relation_extraction.py
Browse files- relation_extraction.py +18 -4
relation_extraction.py
CHANGED
|
@@ -123,10 +123,24 @@ class relation_extraction(evaluate.Metric):
|
|
| 123 |
# TODO: Download external resources if needed
|
| 124 |
pass
|
| 125 |
|
| 126 |
-
def _compute(self, predictions, references, mode,
|
| 127 |
-
"""
|
| 128 |
-
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
predictions = convert_format(predictions)
|
| 131 |
references = convert_format(references)
|
| 132 |
|
|
@@ -207,7 +221,7 @@ class relation_extraction(evaluate.Metric):
|
|
| 207 |
scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
|
| 208 |
scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])
|
| 209 |
|
| 210 |
-
if
|
| 211 |
return scores
|
| 212 |
|
| 213 |
return scores["ALL"]
|
|
|
|
| 123 |
# TODO: Download external resources if needed
|
| 124 |
pass
|
| 125 |
|
| 126 |
+
def _compute(self, predictions, references, mode, detailed_scores=False, relation_types=[]):
|
| 127 |
+
"""
|
| 128 |
+
This method computes and returns various scoring metrics for the prediction model based on the mode specified, including Precision, Recall, F1-Score and others. It evaluates the model's predictions against the provided reference data.
|
| 129 |
|
| 130 |
+
Parameters:
|
| 131 |
+
predictions: A list of predicted relations from the model.
|
| 132 |
+
references: A list of ground-truth or reference relations to compare the predictions against.
|
| 133 |
+
mode: Evaluation mode - 'strict' or 'boundaries'. 'strict' mode takes into account both entities type and their relationships
|
| 134 |
+
while 'boundaries' mode only considers the entity spans of the relationships.
|
| 135 |
+
detailed_scores: Boolean value, if True it returns scores for each relation type specifically,
|
| 136 |
+
if False it returns the overall scores.
|
| 137 |
+
relation_types: A list of relation types to consider while evaluating. If not provided, relation types will be constructed
|
| 138 |
+
from the ground truth or reference data.
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
|
| 142 |
+
"""
|
| 143 |
+
|
| 144 |
predictions = convert_format(predictions)
|
| 145 |
references = convert_format(references)
|
| 146 |
|
|
|
|
| 221 |
scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
|
| 222 |
scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])
|
| 223 |
|
| 224 |
+
if detailed_scores:
|
| 225 |
return scores
|
| 226 |
|
| 227 |
return scores["ALL"]
|