Spaces:
Runtime error
Runtime error
Commit
·
8a998bc
1
Parent(s):
58f50d0
Update relation_extraction.py
Browse files- relation_extraction.py +26 -17
relation_extraction.py
CHANGED
|
@@ -13,21 +13,19 @@ year={2020}
|
|
| 13 |
|
| 14 |
# TODO: Add description of the module here
|
| 15 |
_DESCRIPTION = """\
|
| 16 |
-
This
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
| 20 |
-
# TODO: Add description of the arguments of the module here
|
| 21 |
_KWARGS_DESCRIPTION = """
|
| 22 |
-
Calculates how good are predictions given some references, using
|
| 23 |
Args:
|
| 24 |
-
predictions (list of list of dictionary):
|
| 25 |
-
|
| 26 |
-
references (list of list of dictionary): references for each relation and its type
|
| 27 |
|
| 28 |
Returns:
|
| 29 |
-
**output** (`dictionary` of `dictionary`s)
|
| 30 |
-
- **entity type** (`dictionary`): score of
|
| 31 |
- **tp** : true positive count
|
| 32 |
- **fp** : false positive count
|
| 33 |
- **fn** : false negative count
|
|
@@ -38,12 +36,24 @@ Returns:
|
|
| 38 |
- **Macro_p** : macro precision
|
| 39 |
- **Macro_r** : macro recall
|
| 40 |
Examples:
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"""
|
| 48 |
|
| 49 |
|
|
@@ -66,6 +76,7 @@ def convert_format(data:list):
|
|
| 66 |
'tail_type': ['product', 'product'...]}
|
| 67 |
...
|
| 68 |
]
|
|
|
|
| 69 |
"""
|
| 70 |
predictions = []
|
| 71 |
for item in data:
|
|
@@ -84,7 +95,7 @@ def convert_format(data:list):
|
|
| 84 |
|
| 85 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 86 |
class relation_extraction(evaluate.Metric):
|
| 87 |
-
"""
|
| 88 |
|
| 89 |
def _info(self):
|
| 90 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
@@ -119,8 +130,6 @@ class relation_extraction(evaluate.Metric):
|
|
| 119 |
)
|
| 120 |
|
| 121 |
def _download_and_prepare(self, dl_manager):
|
| 122 |
-
"""Optional: download external resources useful to compute the scores"""
|
| 123 |
-
# TODO: Download external resources if needed
|
| 124 |
pass
|
| 125 |
|
| 126 |
def _compute(self, predictions, references, mode, detailed_scores=False, relation_types=[]):
|
|
|
|
| 13 |
|
| 14 |
# TODO: Add description of the module here
|
| 15 |
_DESCRIPTION = """\
|
| 16 |
+
This metric is used for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
|
|
|
| 20 |
_KWARGS_DESCRIPTION = """
|
| 21 |
+
Calculates how good are predictions given some references, using Precision, Recall, F1 Score.
|
| 22 |
Args:
|
| 23 |
+
predictions (list of list of dictionary): A list of predicted relations from the model.
|
| 24 |
+
references (list of list of dictionary): A list of ground-truth or reference relations to compare the predictions against.
|
|
|
|
| 25 |
|
| 26 |
Returns:
|
| 27 |
+
**output** (`dictionary` of `dictionary`s) A dictionary mapping each entity type to its respective scoring metrics such as Precision, Recall, F1 Score.
|
| 28 |
+
- **entity type** (`dictionary`): score of selected relation type
|
| 29 |
- **tp** : true positive count
|
| 30 |
- **fp** : false positive count
|
| 31 |
- **fn** : false negative count
|
|
|
|
| 36 |
- **Macro_p** : macro precision
|
| 37 |
- **Macro_r** : macro recall
|
| 38 |
Examples:
|
| 39 |
+
metric_path = "Ikala-allen/relation_extraction"
|
| 40 |
+
module = evaluate.load(metric_path)
|
| 41 |
+
references = [
|
| 42 |
+
[
|
| 43 |
+
{"head": "phipigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 44 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 45 |
+
{'head': 'A醛賦活緊緻精華', 'tail': 'Serum', 'head_type': 'product', 'tail_type': 'category', 'type': 'belongs_to'},
|
| 46 |
+
]
|
| 47 |
+
]
|
| 48 |
+
predictions = [
|
| 49 |
+
[
|
| 50 |
+
{"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 51 |
+
{"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 52 |
+
]
|
| 53 |
+
]
|
| 54 |
+
evaluation_scores = module.compute(predictions=predictions, references=references, mode="strict", detailed_scores=False, relation_types=[])
|
| 55 |
+
print(evaluation_scores)
|
| 56 |
+
{'tp': 1, 'fp': 1, 'fn': 2, 'p': 50.0, 'r': 33.333333333333336, 'f1': 40.0, 'Macro_f1': 25.0, 'Macro_p': 25.0, 'Macro_r': 25.0}
|
| 57 |
"""
|
| 58 |
|
| 59 |
|
|
|
|
| 76 |
'tail_type': ['product', 'product'...]}
|
| 77 |
...
|
| 78 |
]
|
| 79 |
+
|
| 80 |
"""
|
| 81 |
predictions = []
|
| 82 |
for item in data:
|
|
|
|
| 95 |
|
| 96 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 97 |
class relation_extraction(evaluate.Metric):
|
| 98 |
+
"""evaluating the quality of relation extraction output"""
|
| 99 |
|
| 100 |
def _info(self):
|
| 101 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
def _download_and_prepare(self, dl_manager):
|
|
|
|
|
|
|
| 133 |
pass
|
| 134 |
|
| 135 |
def _compute(self, predictions, references, mode, detailed_scores=False, relation_types=[]):
|