Spaces:
Runtime error
Runtime error
Commit
·
cb05f51
1
Parent(s):
370291f
Update relation_extraction.py
Browse files- relation_extraction.py +30 -49
relation_extraction.py
CHANGED
|
@@ -2,40 +2,32 @@ import evaluate
|
|
| 2 |
import datasets
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
-
# Add BibTeX citation
|
| 6 |
_CITATION = """\
|
| 7 |
-
@
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
link = https://arxiv.org/abs/2009.10684
|
| 12 |
}
|
| 13 |
"""
|
| 14 |
|
| 15 |
-
# Add description of the module here
|
| 16 |
_DESCRIPTION = """\
|
| 17 |
-
This
|
| 18 |
"""
|
| 19 |
|
| 20 |
|
| 21 |
-
# Add description of the arguments of the module here
|
| 22 |
_KWARGS_DESCRIPTION = """
|
| 23 |
-
Calculates how good are predictions given some references, using
|
| 24 |
Args:
|
| 25 |
-
predictions
|
| 26 |
-
|
| 27 |
-
references
|
| 28 |
-
|
| 29 |
Returns:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **tp** : true positive count
|
| 33 |
-
- **fp** : false positive count
|
| 34 |
-
- **fn** : false negative count
|
| 35 |
-
- **p** : precision
|
| 36 |
-
- **r** : recall
|
| 37 |
-
- **f1** : micro f1 score
|
| 38 |
-
- **ALL** (`dictionary`): score of all of the type (sell and belongs to)
|
| 39 |
- **tp** : true positive count
|
| 40 |
- **fp** : false positive count
|
| 41 |
- **fn** : false negative count
|
|
@@ -46,25 +38,15 @@ Returns:
|
|
| 46 |
- **Macro_p** : macro precision
|
| 47 |
- **Macro_r** : macro recall
|
| 48 |
Examples:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
... ]
|
| 56 |
-
... ]
|
| 57 |
-
>>> predictions = [
|
| 58 |
-
... [
|
| 59 |
-
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 60 |
-
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
|
| 61 |
-
... ]
|
| 62 |
-
... ]
|
| 63 |
-
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
|
| 64 |
-
>>> print(evaluation_scores)
|
| 65 |
-
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
|
| 66 |
"""
|
| 67 |
|
|
|
|
| 68 |
def convert_format(data:list):
|
| 69 |
"""
|
| 70 |
Args:
|
|
@@ -75,12 +57,13 @@ def convert_format(data:list):
|
|
| 75 |
'head_type': ['product', 'brand'...],
|
| 76 |
'type': ['sell', 'sell'...],
|
| 77 |
'tail': ['國際認證之色乳', '國際認證之色乳'...],
|
| 78 |
-
'tail_type': ['product', 'product'...]},
|
|
|
|
| 79 |
{'head': ['SABONTAIWAN', 'SNTAIWAN'...],
|
| 80 |
'head_type': ['brand', 'brand'...],
|
| 81 |
'type': ['sell', 'sell'...],
|
| 82 |
'tail': ['大馬士革玫瑰有機光燦系列', '大馬士革玫瑰有機光燦系列'...],
|
| 83 |
-
'tail_type': ['product', 'product'...]}
|
| 84 |
...
|
| 85 |
]
|
| 86 |
"""
|
|
@@ -101,12 +84,7 @@ def convert_format(data:list):
|
|
| 101 |
|
| 102 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 103 |
class relation_extraction(evaluate.Metric):
|
| 104 |
-
"""
|
| 105 |
-
evaluation metric of relation extraction
|
| 106 |
-
inputs:
|
| 107 |
-
predictions : (`list` of `list`s of `dictionary`s) about relation and its type of prediction
|
| 108 |
-
references : (`list` of `list`s of `dictionary`s) about references for each relation and its type.
|
| 109 |
-
"""
|
| 110 |
|
| 111 |
def _info(self):
|
| 112 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
@@ -145,7 +123,7 @@ class relation_extraction(evaluate.Metric):
|
|
| 145 |
# TODO: Download external resources if needed
|
| 146 |
pass
|
| 147 |
|
| 148 |
-
def _compute(self, predictions, references, mode=
|
| 149 |
"""Returns the scores"""
|
| 150 |
# TODO: Compute the different scores of the module
|
| 151 |
|
|
@@ -229,4 +207,7 @@ class relation_extraction(evaluate.Metric):
|
|
| 229 |
scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
|
| 230 |
scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])
|
| 231 |
|
|
|
|
|
|
|
|
|
|
| 232 |
return scores
|
|
|
|
| 2 |
import datasets
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
+
# TODO: Add BibTeX citation
|
| 6 |
_CITATION = """\
|
| 7 |
+
@InProceedings{huggingface:module,
|
| 8 |
+
title = {A great new module},
|
| 9 |
+
authors={huggingface, Inc.},
|
| 10 |
+
year={2020}
|
|
|
|
| 11 |
}
|
| 12 |
"""
|
| 13 |
|
| 14 |
+
# TODO: Add description of the module here
|
| 15 |
_DESCRIPTION = """\
|
| 16 |
+
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
| 20 |
+
# TODO: Add description of the arguments of the module here
|
| 21 |
_KWARGS_DESCRIPTION = """
|
| 22 |
+
Calculates how good are predictions given some references, using certain scores
|
| 23 |
Args:
|
| 24 |
+
predictions (list of list of dictionary): relation and its type of prediction
|
| 25 |
+
|
| 26 |
+
references (list of list of dictionary): references for each relation and its type
|
| 27 |
+
|
| 28 |
Returns:
|
| 29 |
+
**output** (`dictionary` of `dictionary`s) with multiple key-value pairs
|
| 30 |
+
- **entity type** (`dictionary`): score of all of the type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
- **tp** : true positive count
|
| 32 |
- **fp** : false positive count
|
| 33 |
- **fn** : false negative count
|
|
|
|
| 38 |
- **Macro_p** : macro precision
|
| 39 |
- **Macro_r** : macro recall
|
| 40 |
Examples:
|
| 41 |
+
Examples should be written in doctest format, and should illustrate how
|
| 42 |
+
to use the function.
|
| 43 |
+
my_new_module = evaluate.load("my_new_module")
|
| 44 |
+
results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
| 45 |
+
print(results)
|
| 46 |
+
{'accuracy': 1.0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"""
|
| 48 |
|
| 49 |
+
|
| 50 |
def convert_format(data:list):
|
| 51 |
"""
|
| 52 |
Args:
|
|
|
|
| 57 |
'head_type': ['product', 'brand'...],
|
| 58 |
'type': ['sell', 'sell'...],
|
| 59 |
'tail': ['國際認證之色乳', '國際認證之色乳'...],
|
| 60 |
+
'tail_type': ['product', 'product'...]},
|
| 61 |
+
|
| 62 |
{'head': ['SABONTAIWAN', 'SNTAIWAN'...],
|
| 63 |
'head_type': ['brand', 'brand'...],
|
| 64 |
'type': ['sell', 'sell'...],
|
| 65 |
'tail': ['大馬士革玫瑰有機光燦系列', '大馬士革玫瑰有機光燦系列'...],
|
| 66 |
+
'tail_type': ['product', 'product'...]}
|
| 67 |
...
|
| 68 |
]
|
| 69 |
"""
|
|
|
|
| 84 |
|
| 85 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 86 |
class relation_extraction(evaluate.Metric):
|
| 87 |
+
"""TODO: Short description of my evaluation module."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
def _info(self):
|
| 90 |
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
|
|
|
| 123 |
# TODO: Download external resources if needed
|
| 124 |
pass
|
| 125 |
|
| 126 |
+
def _compute(self, predictions, references, mode, only_all=True, relation_types=[]):
|
| 127 |
"""Returns the scores"""
|
| 128 |
# TODO: Compute the different scores of the module
|
| 129 |
|
|
|
|
| 207 |
scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types])
|
| 208 |
scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types])
|
| 209 |
|
| 210 |
+
if only_all:
|
| 211 |
+
return scores["ALL"]
|
| 212 |
+
|
| 213 |
return scores
|