Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """DIS.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1MI9utM7GJbz0w_zw1GJNU-ay15SzZHIN | |
| # Clone official repo | |
| """ | |
| # Commented out IPython magic to ensure Python compatibility. | |
| ! git clone https://github.com/xuebinqin/DIS | |
| # %cd ./DIS/IS-Net | |
| !pip install gdown | |
| !mkdir ./saved_models | |
| """# Imports""" | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| import gdown | |
| import os | |
| import requests | |
| import matplotlib.pyplot as plt | |
| from io import BytesIO | |
| # project imports | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import * | |
| """# Helpers""" | |
| drive_link = "https://drive.google.com/uc?id=1XHIzgTzY5BQHw140EDIgwIb53K659ENH" | |
| # Specify the local path and filename | |
| local_path = "/content/DIS/IS-Net/saved_models/isnet.pth" | |
| # Download the file | |
| gdown.download(drive_link, local_path, quiet=False) | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Download official weights | |
| class GOSNormalize(object): | |
| ''' | |
| Normalize the Image using torch.transforms | |
| ''' | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self,image): | |
| image = normalize(image,self.mean,self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
| def load_image(im_path, hypar): | |
| if im_path.startswith("http"): | |
| im_path = BytesIO(requests.get(im_path).content) | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im,255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape | |
| def build_model(hypar,device): | |
| net = hypar["model"]#GOSNETINC(3,1) | |
| # convert to half precision | |
| if(hypar["model_digit"]=="half"): | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if(hypar["restore_model"]!=""): | |
| net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device)) | |
| net.to(device) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| ''' | |
| Given an Image, predict the mask | |
| ''' | |
| net.eval() | |
| if(hypar["model_digit"]=="full"): | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable | |
| ds_val = net(inputs_val_v)[0] # list of 6 results | |
| pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction | |
| ## recover the prediction spatial size to the orignal image size | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| pred_val = (pred_val-mi)/(ma-mi) # max = 1 | |
| if device == 'cuda': torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need | |
| """# Set Parameters""" | |
| hypar = {} # paramters for inferencing | |
| hypar["model_path"] ="./saved_models" ## load trained weights from this path | |
| hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights | |
| hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision | |
| ## choose floating point accuracy -- | |
| hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number | |
| hypar["seed"] = 0 | |
| hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size | |
| ## data augmentation parameters --- | |
| hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images | |
| hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation | |
| hypar["model"] = ISNetDIS() | |
| """# Build Model""" | |
| net = build_model(hypar, device) | |
| """# Predict Mask""" | |
| gsheetid = "1n9kk7IHyBzkw5e08wpjjt-Ry5aE_thqGrJ97rMeN-K4" | |
| sheet_name = "sarvm" | |
| gsheet_url = "https://docs.google.com/spreadsheets/d/{}/gviz/tq?tqx=out:csv&sheet={}".format(gsheetid, sheet_name) | |
| gsheet_url | |
| import pandas as pd | |
| df = pd.read_csv(gsheet_url) | |
| image_path = df.iloc[-1]['Image'] | |
| drive_link = image_path | |
| # Specify the local path and filename | |
| local_path = "/content/DIS/IS-Net/saved_models/input2.jpg" | |
| # Download the file | |
| gdown.download(drive_link, local_path, quiet=False) | |
| from google.colab.patches import cv2_imshow | |
| from PIL import Image | |
| image_path = "/content/DIS/IS-Net/saved_models/input2.jpg" | |
| # image_bytes = BytesIO(requests.get(image_path).content) | |
| # print(image_bytes) | |
| image_tensor, orig_size = load_image(image_path, hypar) | |
| mask = predict(net,image_tensor,orig_size, hypar, device) | |
| image = Image.open(image_path) | |
| f, ax = plt.subplots(1,2, figsize = (35,20)) | |
| # ax[0].imshow(np.array(Image.open(image_bytes))) # Original image | |
| # cv2_imshow(image_path) | |
| ax[0].imshow(mask, cmap = 'gray') # retouched image | |
| # ax[0].set_title("Original Image") | |
| ax[0].set_title("Mask") | |
| plt.show() | |
| import cv2 | |
| image = cv2.imread(image_path) | |
| h, w , _ = image.shape | |
| # print(h) | |
| # print(w) | |
| # print(_) | |
| # print(image) | |
| h, w , _ = image.shape | |
| # print(h) | |
| # print(w) | |
| # print(_) | |
| # new_image = np.zeros_like(image) | |
| # new_image[mask] = image[mask] | |
| new_image = cv2.bitwise_and(image, image, mask=mask) | |
| transparent_bg = np.zeros((new_image.shape[0],new_image.shape[1], new_image.shape[2]+1) , dtype=np.uint8) | |
| # Apply the mask to the transparent background | |
| transparent_bg[:, :, :3] = new_image | |
| # Set the alpha channel using the mask | |
| transparent_bg[:, :, 3] = mask | |
| # Save the new image with a transparent background | |
| output_path = "/content/output.png" | |
| cv2.imwrite(output_path, transparent_bg) | |
| # Save the new image | |
| # output_path = "/content/output.jpg" | |
| # cv2.imwrite(output_path, new_image) | |