Spaces:
Sleeping
Sleeping
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from functools import partial | |
| from pathlib import Path | |
| import urllib.request | |
| import torch | |
| from .modeling import ( | |
| ImageEncoderViT, | |
| MaskDecoder, | |
| PromptEncoder, | |
| Sam, | |
| TwoWayTransformer, | |
| ) | |
| from .modeling.image_encoder_swin import SwinTransformer | |
| from monai.utils import ensure_tuple_rep, optional_import | |
| def build_sam_vit_h(checkpoint=None, image_size=1024): | |
| return _build_sam( | |
| encoder_embed_dim=1280, | |
| encoder_depth=32, | |
| encoder_num_heads=16, | |
| encoder_global_attn_indexes=[7, 15, 23, 31], | |
| checkpoint=checkpoint, | |
| image_size=image_size, | |
| ) | |
| build_sam = build_sam_vit_h | |
| def build_sam_vit_l(checkpoint=None, image_size=1024): | |
| return _build_sam( | |
| encoder_embed_dim=1024, | |
| encoder_depth=24, | |
| encoder_num_heads=16, | |
| encoder_global_attn_indexes=[5, 11, 17, 23], | |
| checkpoint=checkpoint, | |
| image_size=image_size, | |
| ) | |
| def build_sam_vit_b(checkpoint=None, image_size=1024): | |
| return _build_sam( | |
| encoder_embed_dim=768, | |
| encoder_depth=12, | |
| encoder_num_heads=12, | |
| encoder_global_attn_indexes=[2, 5, 8, 11], | |
| checkpoint=checkpoint, | |
| image_size=image_size, | |
| ) | |
| """ | |
| Examples:: | |
| # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48. | |
| >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48) | |
| # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage. | |
| >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2)) | |
| # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing. | |
| >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2) | |
| """ | |
| def build_sam_vit_swin(checkpoint=None, image_size=96): | |
| print('==> build_sam_vit_swin') | |
| return _build_sam( | |
| encoder_embed_dim=48, | |
| encoder_depth=12, | |
| encoder_num_heads=12, | |
| encoder_global_attn_indexes=[2, 5, 8, 11], | |
| checkpoint=checkpoint, | |
| image_size=image_size, | |
| ) | |
| sam_model_registry = { | |
| "default": build_sam_vit_h, | |
| "vit_h": build_sam_vit_h, | |
| "vit_l": build_sam_vit_l, | |
| "vit_b": build_sam_vit_b, | |
| "swin_vit": build_sam_vit_swin, | |
| } | |
| def _build_sam( | |
| encoder_embed_dim, | |
| encoder_depth, | |
| encoder_num_heads, | |
| encoder_global_attn_indexes, | |
| checkpoint=None, | |
| image_size=None, | |
| spatial_dims=3, | |
| ): | |
| prompt_embed_dim = 768 | |
| patch_size = ensure_tuple_rep(2, spatial_dims) | |
| window_size = ensure_tuple_rep(7, spatial_dims) | |
| image_embedding_size = [size // 32 for size in image_size] | |
| sam = Sam( | |
| image_encoder=SwinTransformer( | |
| in_chans=1, | |
| embed_dim=encoder_embed_dim, | |
| window_size=window_size, | |
| patch_size=patch_size, | |
| depths=(2, 2, 6, 2), #(2, 2, 6, 2), | |
| num_heads=(3, 6, 12, 24), | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| spatial_dims=spatial_dims, | |
| ), | |
| prompt_encoder=PromptEncoder( | |
| embed_dim=prompt_embed_dim, | |
| image_embedding_size=image_embedding_size, | |
| input_image_size=image_size, | |
| mask_in_chans=16, | |
| ), | |
| mask_decoder=MaskDecoder( | |
| num_multimask_outputs=3, | |
| transformer=TwoWayTransformer( | |
| depth=2, | |
| embedding_dim=prompt_embed_dim, | |
| mlp_dim=2048, | |
| num_heads=8, | |
| ), | |
| transformer_dim=prompt_embed_dim, | |
| iou_head_depth=3, | |
| iou_head_hidden_dim=256, | |
| ), | |
| pixel_mean=[123.675, 116.28, 103.53], | |
| pixel_std=[58.395, 57.12, 57.375], | |
| ) | |
| sam.eval() | |
| if checkpoint is not None: | |
| checkpoint = Path(checkpoint) | |
| if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists(): | |
| cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ") | |
| if len(cmd) == 0 or cmd.lower() == 'y': | |
| checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
| print("Downloading SAM ViT-B checkpoint...") | |
| urllib.request.urlretrieve( | |
| "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", | |
| checkpoint, | |
| ) | |
| print(checkpoint.name, " is downloaded!") | |
| elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists(): | |
| cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ") | |
| if len(cmd) == 0 or cmd.lower() == 'y': | |
| checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
| print("Downloading SAM ViT-H checkpoint...") | |
| urllib.request.urlretrieve( | |
| "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
| checkpoint, | |
| ) | |
| print(checkpoint.name, " is downloaded!") | |
| elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists(): | |
| cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ") | |
| if len(cmd) == 0 or cmd.lower() == 'y': | |
| checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
| print("Downloading SAM ViT-L checkpoint...") | |
| urllib.request.urlretrieve( | |
| "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
| checkpoint, | |
| ) | |
| print(checkpoint.name, " is downloaded!") | |
| if checkpoint is not None: | |
| with open(checkpoint, "rb") as f: | |
| state_dict = torch.load(f) | |
| sam.load_state_dict(state_dict) | |
| return sam | |