Spaces:
Running
Running
| from typing import Sequence, Tuple, Type, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| from torch.nn import LayerNorm | |
| from monai.networks.blocks import MLPBlock as Mlp | |
| from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock | |
| from monai.networks.layers import DropPath, trunc_normal_ | |
| from monai.utils import ensure_tuple_rep, optional_import | |
| rearrange, _ = optional_import("einops", name="rearrange") | |
| def window_partition(x, window_size): | |
| """window partition operation based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| Args: | |
| x: input tensor. | |
| window_size: local window size. | |
| """ | |
| x_shape = x.size() | |
| if len(x_shape) == 5: | |
| b, d, h, w, c = x_shape | |
| x = x.view( | |
| b, | |
| d // window_size[0], | |
| window_size[0], | |
| h // window_size[1], | |
| window_size[1], | |
| w // window_size[2], | |
| window_size[2], | |
| c, | |
| ) | |
| windows = ( | |
| x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, window_size[0] * window_size[1] * window_size[2], c) | |
| ) | |
| elif len(x_shape) == 4: | |
| b, h, w, c = x.shape | |
| x = x.view(b, h // window_size[0], window_size[0], w // window_size[1], window_size[1], c) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0] * window_size[1], c) | |
| return windows | |
| def window_reverse(windows, window_size, dims): | |
| """window reverse operation based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| Args: | |
| windows: windows tensor. | |
| window_size: local window size. | |
| dims: dimension values. | |
| """ | |
| if len(dims) == 4: | |
| b, d, h, w = dims | |
| x = windows.view( | |
| b, | |
| d // window_size[0], | |
| h // window_size[1], | |
| w // window_size[2], | |
| window_size[0], | |
| window_size[1], | |
| window_size[2], | |
| -1, | |
| ) | |
| x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(b, d, h, w, -1) | |
| elif len(dims) == 3: | |
| b, h, w = dims | |
| x = windows.view(b, h // window_size[0], w // window_size[0], window_size[0], window_size[1], -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) | |
| return x | |
| def get_window_size(x_size, window_size, shift_size=None): | |
| """Computing window size based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| Args: | |
| x_size: input size. | |
| window_size: local window size. | |
| shift_size: window shifting size. | |
| """ | |
| use_window_size = list(window_size) | |
| if shift_size is not None: | |
| use_shift_size = list(shift_size) | |
| for i in range(len(x_size)): | |
| if x_size[i] <= window_size[i]: | |
| use_window_size[i] = x_size[i] | |
| if shift_size is not None: | |
| use_shift_size[i] = 0 | |
| if shift_size is None: | |
| return tuple(use_window_size) | |
| else: | |
| return tuple(use_window_size), tuple(use_shift_size) | |
| class WindowAttention(nn.Module): | |
| """ | |
| Window based multi-head self attention module with relative position bias based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int, | |
| window_size: Sequence[int], | |
| qkv_bias: bool = False, | |
| attn_drop: float = 0.0, | |
| proj_drop: float = 0.0, | |
| ) -> None: | |
| """ | |
| Args: | |
| dim: number of feature channels. | |
| num_heads: number of attention heads. | |
| window_size: local window size. | |
| qkv_bias: add a learnable bias to query, key, value. | |
| attn_drop: attention dropout rate. | |
| proj_drop: dropout rate of output. | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| mesh_args = torch.meshgrid.__kwdefaults__ | |
| if len(self.window_size) == 3: | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros( | |
| (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1), | |
| num_heads, | |
| ) | |
| ) | |
| coords_d = torch.arange(self.window_size[0]) | |
| coords_h = torch.arange(self.window_size[1]) | |
| coords_w = torch.arange(self.window_size[2]) | |
| if mesh_args is not None: | |
| coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w, indexing="ij")) | |
| else: | |
| coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) | |
| coords_flatten = torch.flatten(coords, 1) | |
| relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 2] += self.window_size[2] - 1 | |
| relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
| relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 | |
| elif len(self.window_size) == 2: | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) | |
| ) | |
| coords_h = torch.arange(self.window_size[0]) | |
| coords_w = torch.arange(self.window_size[1]) | |
| if mesh_args is not None: | |
| coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij")) | |
| else: | |
| coords = torch.stack(torch.meshgrid(coords_h, coords_w)) | |
| coords_flatten = torch.flatten(coords, 1) | |
| relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
| relative_position_index = relative_coords.sum(-1) | |
| self.register_buffer("relative_position_index", relative_position_index) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| trunc_normal_(self.relative_position_bias_table, std=0.02) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x, mask): | |
| b, n, c = x.shape | |
| qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| relative_position_bias = self.relative_position_bias_table[ | |
| self.relative_position_index.clone()[:n, :n].reshape(-1) | |
| ].reshape(n, n, -1) | |
| relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() | |
| attn = attn + relative_position_bias.unsqueeze(0) | |
| if mask is not None: | |
| nw = mask.shape[0] | |
| attn = attn.view(b // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, n, n) | |
| attn = self.softmax(attn) | |
| else: | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(b, n, c) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SwinTransformerBlock(nn.Module): | |
| """ | |
| Swin Transformer block based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int, | |
| window_size: Sequence[int], | |
| shift_size: Sequence[int], | |
| mlp_ratio: float = 4.0, | |
| qkv_bias: bool = True, | |
| drop: float = 0.0, | |
| attn_drop: float = 0.0, | |
| drop_path: float = 0.0, | |
| act_layer: str = "GELU", | |
| norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore | |
| use_checkpoint: bool = False, | |
| ) -> None: | |
| """ | |
| Args: | |
| dim: number of feature channels. | |
| num_heads: number of attention heads. | |
| window_size: local window size. | |
| shift_size: window shift size. | |
| mlp_ratio: ratio of mlp hidden dim to embedding dim. | |
| qkv_bias: add a learnable bias to query, key, value. | |
| drop: dropout rate. | |
| attn_drop: attention dropout rate. | |
| drop_path: stochastic depth rate. | |
| act_layer: activation layer. | |
| norm_layer: normalization layer. | |
| use_checkpoint: use gradient checkpointing for reduced memory usage. | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| self.use_checkpoint = use_checkpoint | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention( | |
| dim, | |
| window_size=self.window_size, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(hidden_size=dim, mlp_dim=mlp_hidden_dim, act=act_layer, dropout_rate=drop, dropout_mode="swin") | |
| def forward_part1(self, x, mask_matrix): | |
| x_shape = x.size() | |
| x = self.norm1(x) | |
| if len(x_shape) == 5: | |
| b, d, h, w, c = x.shape | |
| window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size) | |
| pad_l = pad_t = pad_d0 = 0 | |
| pad_d1 = (window_size[0] - d % window_size[0]) % window_size[0] | |
| pad_b = (window_size[1] - h % window_size[1]) % window_size[1] | |
| pad_r = (window_size[2] - w % window_size[2]) % window_size[2] | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) | |
| _, dp, hp, wp, _ = x.shape | |
| dims = [b, dp, hp, wp] | |
| elif len(x_shape) == 4: | |
| b, h, w, c = x.shape | |
| window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size) | |
| pad_l = pad_t = 0 | |
| pad_r = (window_size[0] - h % window_size[0]) % window_size[0] | |
| pad_b = (window_size[1] - w % window_size[1]) % window_size[1] | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
| _, hp, wp, _ = x.shape | |
| dims = [b, hp, wp] | |
| if any(i > 0 for i in shift_size): | |
| if len(x_shape) == 5: | |
| shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) | |
| elif len(x_shape) == 4: | |
| shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) | |
| attn_mask = mask_matrix | |
| else: | |
| shifted_x = x | |
| attn_mask = None | |
| x_windows = window_partition(shifted_x, window_size) | |
| attn_windows = self.attn(x_windows, mask=attn_mask) | |
| attn_windows = attn_windows.view(-1, *(window_size + (c,))) | |
| shifted_x = window_reverse(attn_windows, window_size, dims) | |
| if any(i > 0 for i in shift_size): | |
| if len(x_shape) == 5: | |
| x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) | |
| elif len(x_shape) == 4: | |
| x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2)) | |
| else: | |
| x = shifted_x | |
| if len(x_shape) == 5: | |
| if pad_d1 > 0 or pad_r > 0 or pad_b > 0: | |
| x = x[:, :d, :h, :w, :].contiguous() | |
| elif len(x_shape) == 4: | |
| if pad_r > 0 or pad_b > 0: | |
| x = x[:, :h, :w, :].contiguous() | |
| return x | |
| def forward_part2(self, x): | |
| return self.drop_path(self.mlp(self.norm2(x))) | |
| def load_from(self, weights, n_block, layer): | |
| root = f"module.{layer}.0.blocks.{n_block}." | |
| block_names = [ | |
| "norm1.weight", | |
| "norm1.bias", | |
| "attn.relative_position_bias_table", | |
| "attn.relative_position_index", | |
| "attn.qkv.weight", | |
| "attn.qkv.bias", | |
| "attn.proj.weight", | |
| "attn.proj.bias", | |
| "norm2.weight", | |
| "norm2.bias", | |
| "mlp.fc1.weight", | |
| "mlp.fc1.bias", | |
| "mlp.fc2.weight", | |
| "mlp.fc2.bias", | |
| ] | |
| with torch.no_grad(): | |
| self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]]) | |
| self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]]) | |
| self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]]) | |
| self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]]) | |
| self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]]) | |
| self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]]) | |
| self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]]) | |
| self.attn.proj.bias.copy_(weights["state_dict"][root + block_names[7]]) | |
| self.norm2.weight.copy_(weights["state_dict"][root + block_names[8]]) | |
| self.norm2.bias.copy_(weights["state_dict"][root + block_names[9]]) | |
| self.mlp.linear1.weight.copy_(weights["state_dict"][root + block_names[10]]) | |
| self.mlp.linear1.bias.copy_(weights["state_dict"][root + block_names[11]]) | |
| self.mlp.linear2.weight.copy_(weights["state_dict"][root + block_names[12]]) | |
| self.mlp.linear2.bias.copy_(weights["state_dict"][root + block_names[13]]) | |
| def forward(self, x, mask_matrix): | |
| shortcut = x | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) | |
| else: | |
| x = self.forward_part1(x, mask_matrix) | |
| x = shortcut + self.drop_path(x) | |
| if self.use_checkpoint: | |
| x = x + checkpoint.checkpoint(self.forward_part2, x) | |
| else: | |
| x = x + self.forward_part2(x) | |
| return x | |
| class PatchMerging(nn.Module): | |
| """ | |
| Patch merging layer based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| """ | |
| def __init__( | |
| self, dim: int, norm_layer: Type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3 | |
| ) -> None: # type: ignore | |
| """ | |
| Args: | |
| dim: number of feature channels. | |
| norm_layer: normalization layer. | |
| spatial_dims: number of spatial dims. | |
| """ | |
| super().__init__() | |
| self.dim = dim | |
| if spatial_dims == 3: | |
| self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(8 * dim) | |
| elif spatial_dims == 2: | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x): | |
| x_shape = x.size() | |
| if len(x_shape) == 5: | |
| b, d, h, w, c = x_shape | |
| pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1) | |
| if pad_input: | |
| x = F.pad(x, (0, 0, 0, d % 2, 0, w % 2, 0, h % 2)) | |
| x0 = x[:, 0::2, 0::2, 0::2, :] | |
| x1 = x[:, 1::2, 0::2, 0::2, :] | |
| x2 = x[:, 0::2, 1::2, 0::2, :] | |
| x3 = x[:, 0::2, 0::2, 1::2, :] | |
| x4 = x[:, 1::2, 0::2, 1::2, :] | |
| x5 = x[:, 0::2, 1::2, 0::2, :] | |
| x6 = x[:, 0::2, 0::2, 1::2, :] | |
| x7 = x[:, 1::2, 1::2, 1::2, :] | |
| x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1) | |
| elif len(x_shape) == 4: | |
| b, h, w, c = x_shape | |
| pad_input = (h % 2 == 1) or (w % 2 == 1) | |
| if pad_input: | |
| x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2)) | |
| x0 = x[:, 0::2, 0::2, :] | |
| x1 = x[:, 1::2, 0::2, :] | |
| x2 = x[:, 0::2, 1::2, :] | |
| x3 = x[:, 1::2, 1::2, :] | |
| x = torch.cat([x0, x1, x2, x3], -1) | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| def compute_mask(dims, window_size, shift_size, device): | |
| """Computing region masks based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| Args: | |
| dims: dimension values. | |
| window_size: local window size. | |
| shift_size: shift size. | |
| device: device. | |
| """ | |
| cnt = 0 | |
| if len(dims) == 3: | |
| d, h, w = dims | |
| img_mask = torch.zeros((1, d, h, w, 1), device=device) | |
| for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None): | |
| for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None): | |
| for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None): | |
| img_mask[:, d, h, w, :] = cnt | |
| cnt += 1 | |
| elif len(dims) == 2: | |
| h, w = dims | |
| img_mask = torch.zeros((1, h, w, 1), device=device) | |
| for h in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None): | |
| for w in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None): | |
| img_mask[:, h, w, :] = cnt | |
| cnt += 1 | |
| mask_windows = window_partition(img_mask, window_size) | |
| mask_windows = mask_windows.squeeze(-1) | |
| attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
| attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
| return attn_mask | |
| class BasicLayer(nn.Module): | |
| """ | |
| Basic Swin Transformer layer in one stage based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| depth: int, | |
| num_heads: int, | |
| window_size: Sequence[int], | |
| drop_path: list, | |
| mlp_ratio: float = 4.0, | |
| qkv_bias: bool = False, | |
| drop: float = 0.0, | |
| attn_drop: float = 0.0, | |
| norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore | |
| downsample: isinstance = None, # type: ignore | |
| use_checkpoint: bool = False, | |
| ) -> None: | |
| """ | |
| Args: | |
| dim: number of feature channels. | |
| depths: number of layers in each stage. | |
| num_heads: number of attention heads. | |
| window_size: local window size. | |
| drop_path: stochastic depth rate. | |
| mlp_ratio: ratio of mlp hidden dim to embedding dim. | |
| qkv_bias: add a learnable bias to query, key, value. | |
| drop: dropout rate. | |
| attn_drop: attention dropout rate. | |
| norm_layer: normalization layer. | |
| downsample: downsample layer at the end of the layer. | |
| use_checkpoint: use gradient checkpointing for reduced memory usage. | |
| """ | |
| super().__init__() | |
| self.window_size = window_size | |
| self.shift_size = tuple(i // 2 for i in window_size) | |
| self.no_shift = tuple(0 for i in window_size) | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| self.blocks = nn.ModuleList( | |
| [ | |
| SwinTransformerBlock( | |
| dim=dim, | |
| num_heads=num_heads, | |
| window_size=self.window_size, | |
| shift_size=self.no_shift if (i % 2 == 0) else self.shift_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer, | |
| use_checkpoint=use_checkpoint, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.downsample = downsample | |
| if self.downsample is not None: | |
| self.downsample = downsample(dim=dim, norm_layer=norm_layer, spatial_dims=len(self.window_size)) | |
| def forward(self, x): | |
| x_shape = x.size() | |
| if len(x_shape) == 5: | |
| b, c, d, h, w = x_shape | |
| window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size) | |
| x = rearrange(x, "b c d h w -> b d h w c") | |
| dp = int(np.ceil(d / window_size[0])) * window_size[0] | |
| hp = int(np.ceil(h / window_size[1])) * window_size[1] | |
| wp = int(np.ceil(w / window_size[2])) * window_size[2] | |
| attn_mask = compute_mask([dp, hp, wp], window_size, shift_size, x.device) | |
| for blk in self.blocks: | |
| x = blk(x, attn_mask) | |
| x = x.view(b, d, h, w, -1) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| x = rearrange(x, "b d h w c -> b c d h w") | |
| elif len(x_shape) == 4: | |
| b, c, h, w = x_shape | |
| window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size) | |
| x = rearrange(x, "b c h w -> b h w c") | |
| hp = int(np.ceil(h / window_size[0])) * window_size[0] | |
| wp = int(np.ceil(w / window_size[1])) * window_size[1] | |
| attn_mask = compute_mask([hp, wp], window_size, shift_size, x.device) | |
| for blk in self.blocks: | |
| x = blk(x, attn_mask) | |
| x = x.view(b, h, w, -1) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| x = rearrange(x, "b h w c -> b c h w") | |
| return x | |
| class SwinTransformer(nn.Module): | |
| """ | |
| Swin Transformer based on: "Liu et al., | |
| Swin Transformer: Hierarchical Vision Transformer using Shifted Windows | |
| <https://arxiv.org/abs/2103.14030>" | |
| https://github.com/microsoft/Swin-Transformer | |
| """ | |
| def __init__( | |
| self, | |
| in_chans: int, | |
| embed_dim: int, | |
| window_size: Sequence[int], | |
| patch_size: Sequence[int], | |
| depths: Sequence[int], | |
| num_heads: Sequence[int], | |
| mlp_ratio: float = 4.0, | |
| qkv_bias: bool = True, | |
| drop_rate: float = 0.0, | |
| attn_drop_rate: float = 0.0, | |
| drop_path_rate: float = 0.0, | |
| norm_layer: Type[LayerNorm] = nn.LayerNorm, # type: ignore | |
| patch_norm: bool = False, | |
| use_checkpoint: bool = False, | |
| spatial_dims: int = 3, | |
| ) -> None: | |
| """ | |
| Args: | |
| in_chans: dimension of input channels. | |
| embed_dim: number of linear projection output channels. | |
| window_size: local window size. | |
| patch_size: patch size. | |
| depths: number of layers in each stage. | |
| num_heads: number of attention heads. | |
| mlp_ratio: ratio of mlp hidden dim to embedding dim. | |
| qkv_bias: add a learnable bias to query, key, value. | |
| drop_rate: dropout rate. | |
| attn_drop_rate: attention dropout rate. | |
| drop_path_rate: stochastic depth rate. | |
| norm_layer: normalization layer. | |
| patch_norm: add normalization after patch embedding. | |
| use_checkpoint: use gradient checkpointing for reduced memory usage. | |
| spatial_dims: spatial dimension. | |
| """ | |
| super().__init__() | |
| self.num_layers = len(depths) | |
| self.embed_dim = embed_dim | |
| self.patch_norm = patch_norm | |
| self.window_size = window_size | |
| self.patch_size = patch_size | |
| self.patch_embed = PatchEmbed( | |
| patch_size=self.patch_size, | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None, # type: ignore | |
| spatial_dims=spatial_dims, | |
| ) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
| # self.layers1 = nn.ModuleList() | |
| # self.layers2 = nn.ModuleList() | |
| # self.layers3 = nn.ModuleList() | |
| # self.layers4 = nn.ModuleList() | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = BasicLayer( | |
| dim=int(embed_dim * 2**i_layer), | |
| depth=depths[i_layer], | |
| num_heads=num_heads[i_layer], | |
| window_size=self.window_size, | |
| drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| norm_layer=norm_layer, | |
| downsample=PatchMerging, | |
| use_checkpoint=use_checkpoint, | |
| ) | |
| self.layers.append(layer) | |
| # if i_layer == 0: | |
| # self.layers1.append(layer) | |
| # elif i_layer == 1: | |
| # self.layers2.append(layer) | |
| # elif i_layer == 2: | |
| # self.layers3.append(layer) | |
| # elif i_layer == 3: | |
| # self.layers4.append(layer) | |
| self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) | |
| def proj_out(self, x, normalize=False): | |
| if normalize: | |
| x_shape = x.size() | |
| if len(x_shape) == 5: | |
| n, ch, d, h, w = x_shape | |
| x = rearrange(x, "n c d h w -> n d h w c") | |
| x = F.layer_norm(x, [ch]) | |
| x = rearrange(x, "n d h w c -> n c d h w") | |
| elif len(x_shape) == 4: | |
| n, ch, h, w = x_shape | |
| x = rearrange(x, "n c h w -> n h w c") | |
| x = F.layer_norm(x, [ch]) | |
| x = rearrange(x, "n h w c -> n c h w") | |
| return x | |
| def forward(self, x, normalize=True): | |
| # x input: [B*sample, C(1), H, W, D] | |
| # x = rearrange(x, "b c h w d -> b c d h w") | |
| # print('>> input: ', x.shape) | |
| x = self.patch_embed(x) | |
| # print('>> patch_embed: ', x.shape) | |
| x = self.pos_drop(x) | |
| for layer in self.layers: | |
| x = layer(x.contiguous()) | |
| # print('>> layer: ', x.shape) | |
| return x | |
| # # x0_out = self.proj_out(x0, normalize) | |
| # x1 = self.layers1[0](x0.contiguous()) | |
| # # x1_out = self.proj_out(x1, normalize) | |
| # x2 = self.layers2[0](x1.contiguous()) | |
| # # x2_out = self.proj_out(x2, normalize) | |
| # x3 = self.layers3[0](x2.contiguous()) | |
| # # x3_out = self.proj_out(x3, normalize) | |
| # x4 = self.layers4[0](x3.contiguous()) | |
| # # x4_out = self.proj_out(x4, normalize) | |
| # # return [x0_out, x1_out, x2_out, x3_out, x4_out] | |