atlas5301
commited on
Commit
·
a1ac14e
1
Parent(s):
93c1867
release full benchmark viewer
Browse files- data/processed_results.csv +0 -0
- pages/benchmark_viewer.py +99 -0
- pages/long_context.py +1 -2
- pages/zero_context.py +4 -3
data/processed_results.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pages/benchmark_viewer.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def show():
|
| 7 |
+
st.title("Benchmark Results Dashboard")
|
| 8 |
+
|
| 9 |
+
@st.cache_data
|
| 10 |
+
def load_data():
|
| 11 |
+
"""Load and process benchmark results, handling zero accuracy."""
|
| 12 |
+
try:
|
| 13 |
+
df = pd.read_csv('data/processed_results.csv')
|
| 14 |
+
except FileNotFoundError:
|
| 15 |
+
st.error("File 'processed_results.csv' not found.")
|
| 16 |
+
st.stop()
|
| 17 |
+
|
| 18 |
+
epsilon = 1e-6
|
| 19 |
+
num_zero_acc = (df['accuracy'] <= 0).sum()
|
| 20 |
+
if num_zero_acc > 0:
|
| 21 |
+
st.warning(f"Found {num_zero_acc} zero/negative accuracy values. Replacing with {epsilon}.")
|
| 22 |
+
df.loc[df['accuracy'] <= 0, 'accuracy'] = epsilon
|
| 23 |
+
|
| 24 |
+
df['log_accuracy'] = np.log(df['accuracy'])
|
| 25 |
+
return df
|
| 26 |
+
|
| 27 |
+
df = load_data()
|
| 28 |
+
|
| 29 |
+
# Filters
|
| 30 |
+
st.header("Filters")
|
| 31 |
+
|
| 32 |
+
col1, col2, col3 = st.columns(3)
|
| 33 |
+
|
| 34 |
+
with col1:
|
| 35 |
+
datasets = df['dataset'].unique()
|
| 36 |
+
selected_datasets = st.multiselect("Dataset(s)", datasets, default=datasets)
|
| 37 |
+
# Filter data based on selected datasets first
|
| 38 |
+
filtered_df = df[df['dataset'].isin(selected_datasets)]
|
| 39 |
+
|
| 40 |
+
lengths = sorted(filtered_df['length'].unique())
|
| 41 |
+
# Disable length filter if no datasets are selected
|
| 42 |
+
disabled = not selected_datasets
|
| 43 |
+
selected_lengths = st.multiselect("Length(s)", lengths, default=lengths if not disabled and lengths else [], disabled=disabled)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
with col2:
|
| 47 |
+
# Single Model Multiselect (filtered by selected datasets)
|
| 48 |
+
available_models = filtered_df['model'].unique()
|
| 49 |
+
selected_models = st.multiselect("Model(s)", available_models, default=available_models) # Handle empty defaults
|
| 50 |
+
|
| 51 |
+
with col3:
|
| 52 |
+
min_op, max_op = st.slider("Op Range", int(filtered_df['op'].min()), int(filtered_df['op'].max()), (int(filtered_df['op'].min()), int(filtered_df['op'].max())))
|
| 53 |
+
min_acc, max_acc = st.slider("Accuracy Range", float(filtered_df['accuracy'].min()), float(filtered_df['accuracy'].max()), (float(filtered_df['accuracy'].min()), float(filtered_df['accuracy'].max())))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
filtered_df = filtered_df[filtered_df['model'].isin(selected_models) & filtered_df['length'].isin(selected_lengths)]
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
filtered_df = filtered_df[(filtered_df['op'] >= min_op) & (filtered_df['op'] <= max_op) & (filtered_df['accuracy'] >= min_acc) & (filtered_df['accuracy'] <= max_acc)]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if filtered_df.empty:
|
| 63 |
+
st.warning("No data for selected filters.")
|
| 64 |
+
st.stop()
|
| 65 |
+
|
| 66 |
+
def plot_data(filtered_df, selected_models, selected_lengths, log_scale=False):
|
| 67 |
+
"""Plots data vs N, showing different datasets for the same model."""
|
| 68 |
+
fig = go.Figure()
|
| 69 |
+
|
| 70 |
+
for model in selected_models:
|
| 71 |
+
for length in selected_lengths:
|
| 72 |
+
for dataset in filtered_df['dataset'].unique():
|
| 73 |
+
subset_df = filtered_df[(filtered_df['model'] == model) & (filtered_df['length'] == length) & (filtered_df['dataset'] == dataset)]
|
| 74 |
+
if not subset_df.empty:
|
| 75 |
+
y_data = subset_df['log_accuracy'] if log_scale else subset_df['accuracy']
|
| 76 |
+
fig.add_trace(go.Scatter(
|
| 77 |
+
x=subset_df['op'],
|
| 78 |
+
y=y_data,
|
| 79 |
+
mode='lines+markers',
|
| 80 |
+
name=f'{model} Length {length} ({dataset})',
|
| 81 |
+
marker=dict(size=6)
|
| 82 |
+
))
|
| 83 |
+
|
| 84 |
+
y_title = "Log(Accuracy)" if log_scale else "Accuracy"
|
| 85 |
+
fig.update_layout(title=f"{y_title} vs Op", xaxis_title="Op", yaxis_title=y_title)
|
| 86 |
+
return fig
|
| 87 |
+
|
| 88 |
+
view_option = st.radio("View", ["Accuracy", "Log(Accuracy)"])
|
| 89 |
+
|
| 90 |
+
if view_option == "Accuracy":
|
| 91 |
+
fig = plot_data(filtered_df, selected_models, selected_lengths, log_scale=False)
|
| 92 |
+
else: # Log(Accuracy)
|
| 93 |
+
fig = plot_data(filtered_df, selected_models, selected_lengths, log_scale=True)
|
| 94 |
+
|
| 95 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 96 |
+
|
| 97 |
+
if st.checkbox("Show Data Table"):
|
| 98 |
+
st.subheader("Filtered Data")
|
| 99 |
+
st.write(filtered_df)
|
pages/long_context.py
CHANGED
|
@@ -41,6 +41,5 @@ def show():
|
|
| 41 |
**Benchmark Details**:
|
| 42 |
- Evaluated on Symbolic, Medium, and Hard subtasks
|
| 43 |
- AUC scores aggregated across context lengths
|
| 44 |
-
- Larger context evaluations limited by compute constraints
|
| 45 |
-
- Scores normalized across task complexities
|
| 46 |
""")
|
|
|
|
| 41 |
**Benchmark Details**:
|
| 42 |
- Evaluated on Symbolic, Medium, and Hard subtasks
|
| 43 |
- AUC scores aggregated across context lengths
|
| 44 |
+
- Larger context evaluations limited by compute constraints and model performance
|
|
|
|
| 45 |
""")
|
pages/zero_context.py
CHANGED
|
@@ -40,7 +40,8 @@ def show():
|
|
| 40 |
|
| 41 |
# You can leave your explanation/description below
|
| 42 |
st.markdown("""
|
| 43 |
-
**
|
| 44 |
-
-
|
| 45 |
-
-
|
|
|
|
| 46 |
""")
|
|
|
|
| 40 |
|
| 41 |
# You can leave your explanation/description below
|
| 42 |
st.markdown("""
|
| 43 |
+
**Benchmark Details**:
|
| 44 |
+
- Evaluated on Symbolic, Medium, and Hard subtasks.
|
| 45 |
+
- Area Under Curve Metrics is Used to Compare between LLM Performance.
|
| 46 |
+
- AUC is calculated using np.trapz function.
|
| 47 |
""")
|