Spaces:
Sleeping
Sleeping
File size: 1,354 Bytes
ff9adfe 8850ba6 ff9adfe 0593b67 ff9adfe 0593b67 ff9adfe 0593b67 ff9adfe 0593b67 8850ba6 0593b67 ff9adfe 0593b67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from transformers import pipeline
# --- App title and description ---
st.set_page_config(page_title="Fake Job / Lie Detector", layout="centered")
st.title("π Fake Job / Lie Detector")
st.write(
"Enter a job description below and the AI will predict if it's likely genuine or fake."
)
# --- Load zero-shot classification model ---
@st.cache_resource
def load_model():
return pipeline(
"zero-shot-classification",
model="typeform/distilbert-base-uncased-mnli"
)
classifier = load_model()
# --- Text input ---
job_description = st.text_area("Enter the job description here:")
# --- Button action ---
if st.button("Check Job"):
if not job_description.strip():
st.warning("β οΈ Please enter a job description first!")
else:
candidate_labels = ["genuine", "fake"]
result = classifier(job_description, candidate_labels)
label = result['labels'][0]
confidence = round(result['scores'][0]*100, 2)
# --- Display results with color ---
if label == "genuine":
st.success(f"β
Prediction: {label.upper()} ({confidence}%)")
else:
st.error(f"β Prediction: {label.upper()} ({confidence}%)")
# --- Footer ---
st.markdown("---")
st.markdown("Built with β€οΈ using Hugging Face Transformers and Streamlit.")
|