Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # App title | |
| st.set_page_config(page_title="Fake Job Detector", page_icon="π΅οΈββοΈ") | |
| st.title("Fake Job / Lie Detector") | |
| st.markdown("Enter a job description and check if it seems suspicious!") | |
| # Load small NLI model for zero-shot classification (CPU-friendly) | |
| def load_model(): | |
| return pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
| classifier = load_model() | |
| # Input from user | |
| job_description = st.text_area("Enter the job description:") | |
| # Label options | |
| labels = ["Legitimate", "Suspicious", "Fake", "Scam"] | |
| # Button to check | |
| if st.button("Check Job"): | |
| if not job_description.strip(): | |
| st.warning("Please enter a job description!") | |
| else: | |
| # Run zero-shot classification | |
| results = classifier(job_description, candidate_labels=labels) | |
| st.subheader("Prediction:") | |
| # Show top label and scores | |
| top_label = results["labels"][0] | |
| score = results["scores"][0] | |
| st.success(f"Most likely: **{top_label}** ({score*100:.2f}%)") | |
| st.write("Full results:", results) | |