Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,42 +1,103 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import pytesseract
|
| 5 |
from pdf2image import convert_from_bytes
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
extracted_text = ""
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# file is bytes, convert PDF to images
|
| 16 |
-
images = convert_from_bytes(file.read() if hasattr(file, "read") else file)
|
| 17 |
-
for img in images:
|
| 18 |
-
extracted_text += pytesseract.image_to_string(img) + "\n"
|
| 19 |
else:
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
extracted_text = pytesseract.image_to_string(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# Gradio UI
|
| 32 |
iface = gr.Interface(
|
| 33 |
fn=detect_job,
|
| 34 |
inputs=[
|
| 35 |
-
gr.Textbox(
|
| 36 |
-
gr.File(label="Upload PDF/Image
|
| 37 |
],
|
| 38 |
-
outputs="
|
| 39 |
-
title="Fake Job Detector"
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BertTokenizerFast, BertForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
from PIL import Image
|
| 5 |
import pytesseract
|
| 6 |
from pdf2image import convert_from_bytes
|
| 7 |
+
import io
|
| 8 |
|
| 9 |
+
# -------------------------------
|
| 10 |
+
# 1️⃣ Load Hugging Face model
|
| 11 |
+
# -------------------------------
|
| 12 |
+
model_name = "AventIQ-AI/BERT-Spam-Job-Posting-Detection-Model"
|
| 13 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
| 14 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 15 |
+
model.eval()
|
| 16 |
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
model.to(device)
|
| 19 |
+
|
| 20 |
+
# -------------------------------
|
| 21 |
+
# 2️⃣ Text extraction from files
|
| 22 |
+
# -------------------------------
|
| 23 |
+
def extract_text_from_file(file):
|
| 24 |
extracted_text = ""
|
| 25 |
+
try:
|
| 26 |
+
if hasattr(file, "read"):
|
| 27 |
+
file_bytes = file.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
else:
|
| 29 |
+
with open(file, "rb") as f:
|
| 30 |
+
file_bytes = f.read()
|
| 31 |
+
|
| 32 |
+
if str(file.name).lower().endswith(".pdf"):
|
| 33 |
+
pages = convert_from_bytes(file_bytes)
|
| 34 |
+
for page in pages:
|
| 35 |
+
extracted_text += pytesseract.image_to_string(page)
|
| 36 |
+
elif str(file.name).lower().endswith((".png", ".jpg", ".jpeg")):
|
| 37 |
+
img = Image.open(io.BytesIO(file_bytes))
|
| 38 |
extracted_text = pytesseract.image_to_string(img)
|
| 39 |
+
else:
|
| 40 |
+
extracted_text = file_bytes.decode(errors="ignore")
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return f"Error reading file: {e}"
|
| 43 |
+
return extracted_text
|
| 44 |
+
|
| 45 |
+
# -------------------------------
|
| 46 |
+
# 3️⃣ Detection function
|
| 47 |
+
# -------------------------------
|
| 48 |
+
def detect_job(text, file):
|
| 49 |
+
extracted_text = ""
|
| 50 |
+
if file:
|
| 51 |
+
extracted_text = extract_text_from_file(file)
|
| 52 |
+
if text:
|
| 53 |
+
extracted_text += " " + text
|
| 54 |
+
|
| 55 |
+
if not extracted_text.strip():
|
| 56 |
+
return "No text found to classify."
|
| 57 |
+
|
| 58 |
+
# Tokenize and truncate for BERT
|
| 59 |
+
inputs = tokenizer(
|
| 60 |
+
extracted_text,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
truncation=True,
|
| 63 |
+
padding=True,
|
| 64 |
+
max_length=128
|
| 65 |
+
).to(device)
|
| 66 |
+
|
| 67 |
+
# Model prediction
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
outputs = model(**inputs)
|
| 70 |
+
logits = outputs.logits
|
| 71 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
| 72 |
+
|
| 73 |
+
return "Fake" if prediction == 1 else "Legitimate"
|
| 74 |
|
| 75 |
+
# -------------------------------
|
| 76 |
+
# 4️⃣ Gradio Interface
|
| 77 |
+
# -------------------------------
|
| 78 |
+
css = """
|
| 79 |
+
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f7f9fc; color: #333; }
|
| 80 |
+
h1, h2 { color: #1a73e8; text-align: center; margin-bottom: 20px; }
|
| 81 |
+
input, textarea { width: 100%; padding: 12px 15px; margin: 10px 0 20px 0; border: 1px solid #ccc; border-radius: 8px; font-size: 16px; }
|
| 82 |
+
button { background-color: #1a73e8; color: #fff; border: none; padding: 12px 25px; font-size: 16px; border-radius: 8px; cursor: pointer; transition: 0.3s ease; }
|
| 83 |
+
button:hover { background-color: #155ab6; }
|
| 84 |
+
.output { background-color: #f1f3f5; border-left: 4px solid #1a73e8; padding: 15px 20px; border-radius: 8px; font-size: 16px; line-height: 1.5; margin-top: 20px; white-space: pre-wrap; }
|
| 85 |
+
"""
|
| 86 |
|
|
|
|
| 87 |
iface = gr.Interface(
|
| 88 |
fn=detect_job,
|
| 89 |
inputs=[
|
| 90 |
+
gr.Textbox(label="Paste Job Description Here", placeholder="Type or paste job text..."),
|
| 91 |
+
gr.File(label="Upload PDF/Image/Text file")
|
| 92 |
],
|
| 93 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 94 |
+
title="AI Fake Job Detector",
|
| 95 |
+
description="Detect if a job posting is potentially fake or scam using Hugging Face AI model.",
|
| 96 |
+
css=css
|
| 97 |
)
|
| 98 |
|
| 99 |
+
# -------------------------------
|
| 100 |
+
# 5️⃣ Launch app
|
| 101 |
+
# -------------------------------
|
| 102 |
+
if __name__ == "__main__":
|
| 103 |
+
iface.launch()
|