Spaces:
Runtime error
Runtime error
Commit
Β·
98fed04
1
Parent(s):
07da06b
Fix: Set FLASK_APP=app:app for Hugging Face
Browse files- Dockerfile +3 -6
- app.py +132 -0
Dockerfile
CHANGED
|
@@ -1,19 +1,16 @@
|
|
| 1 |
FROM python:3.11
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
-
|
| 5 |
-
# Copy all code
|
| 6 |
COPY . .
|
| 7 |
|
| 8 |
-
# Install dependencies
|
| 9 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
| 10 |
|
| 11 |
-
# Expose port for Hugging Face
|
| 12 |
EXPOSE 7860
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
ENV FLASK_APP=app
|
| 16 |
ENV FLASK_RUN_HOST=0.0.0.0
|
| 17 |
ENV FLASK_RUN_PORT=7860
|
|
|
|
| 18 |
CMD ["flask", "run"]
|
| 19 |
|
|
|
|
| 1 |
FROM python:3.11
|
| 2 |
|
| 3 |
WORKDIR /app
|
|
|
|
|
|
|
| 4 |
COPY . .
|
| 5 |
|
|
|
|
| 6 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
| 7 |
|
|
|
|
| 8 |
EXPOSE 7860
|
| 9 |
|
| 10 |
+
# Fix here π
|
| 11 |
+
ENV FLASK_APP=app:app
|
| 12 |
ENV FLASK_RUN_HOST=0.0.0.0
|
| 13 |
ENV FLASK_RUN_PORT=7860
|
| 14 |
+
|
| 15 |
CMD ["flask", "run"]
|
| 16 |
|
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
| 2 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
|
| 10 |
+
# =======================================
|
| 11 |
+
# π Hugging Face LLM Token + InferenceClient
|
| 12 |
+
# =======================================
|
| 13 |
+
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 14 |
+
|
| 15 |
+
client = InferenceClient(
|
| 16 |
+
model="mistralai/Mistral-7B-Instruct-v0.1",
|
| 17 |
+
token=HUGGINGFACE_TOKEN
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# =======================================
|
| 21 |
+
# π§ Load Skin Disease Model
|
| 22 |
+
# =======================================
|
| 23 |
+
print("Loading skin condition classifier...")
|
| 24 |
+
model_name = "Jayanth2002/dinov2-base-finetuned-SkinDisease"
|
| 25 |
+
image_model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 26 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 27 |
+
|
| 28 |
+
# Class labels
|
| 29 |
+
class_names = [
|
| 30 |
+
'Basal Cell Carcinoma', 'Darier_s Disease', 'Epidermolysis Bullosa Pruriginosa',
|
| 31 |
+
'Hailey-Hailey Disease', 'Herpes Simplex', 'Impetigo', 'Larva Migrans',
|
| 32 |
+
'Leprosy Borderline', 'Leprosy Lepromatous', 'Leprosy Tuberculoid', 'Lichen Planus',
|
| 33 |
+
'Lupus Erythematosus Chronicus Discoides', 'Melanoma', 'Molluscum Contagiosum',
|
| 34 |
+
'Mycosis Fungoides', 'Neurofibromatosis', 'Papilomatosis Confluentes And Reticulate',
|
| 35 |
+
'Pediculosis Capitis', 'Pityriasis Rosea', 'Porokeratosis Actinic', 'Psoriasis',
|
| 36 |
+
'Tinea Corporis', 'Tinea Nigra', 'Tungiasis', 'actinic keratosis', 'dermatofibroma',
|
| 37 |
+
'nevus', 'pigmented benign keratosis', 'seborrheic keratosis', 'squamous cell carcinoma',
|
| 38 |
+
'vascular lesion'
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
# =======================================
|
| 42 |
+
# π Frontend Routes
|
| 43 |
+
# =======================================
|
| 44 |
+
@app.route("/")
|
| 45 |
+
def index():
|
| 46 |
+
return render_template("index.html")
|
| 47 |
+
|
| 48 |
+
@app.route("/upload")
|
| 49 |
+
def upload():
|
| 50 |
+
return render_template("upload.html")
|
| 51 |
+
|
| 52 |
+
@app.route("/result")
|
| 53 |
+
def result():
|
| 54 |
+
return render_template("result.html") # Notice: matches the filename "results.html" instead of "result.html"
|
| 55 |
+
|
| 56 |
+
# =======================================
|
| 57 |
+
# πΈ /analyze Route
|
| 58 |
+
# =======================================
|
| 59 |
+
@app.route('/analyze', methods=['POST'])
|
| 60 |
+
def analyze():
|
| 61 |
+
if 'image' not in request.files:
|
| 62 |
+
return jsonify({"error": "No image uploaded"}), 400
|
| 63 |
+
|
| 64 |
+
image_file = request.files['image']
|
| 65 |
+
image = Image.open(image_file.stream).convert("RGB")
|
| 66 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
logits = image_model(**inputs).logits
|
| 70 |
+
probs = torch.softmax(logits, dim=-1)[0]
|
| 71 |
+
|
| 72 |
+
top_idx = torch.argmax(probs).item()
|
| 73 |
+
top_conf = probs[top_idx].item()
|
| 74 |
+
prediction = class_names[top_idx]
|
| 75 |
+
|
| 76 |
+
top_conditions = sorted(
|
| 77 |
+
zip(class_names, probs.tolist()),
|
| 78 |
+
key=lambda x: x[1],
|
| 79 |
+
reverse=True
|
| 80 |
+
)[:5]
|
| 81 |
+
|
| 82 |
+
return jsonify({
|
| 83 |
+
"prediction": prediction,
|
| 84 |
+
"confidence": round(top_conf, 4),
|
| 85 |
+
"topConditions": [(name, round(prob, 4)) for name, prob in top_conditions],
|
| 86 |
+
"description": f"{prediction} is a skin condition. Please consult a medical professional.",
|
| 87 |
+
"recommendations": [
|
| 88 |
+
"Take a clearer image if unsure.",
|
| 89 |
+
"Consider visiting a dermatologist.",
|
| 90 |
+
"Avoid self-diagnosis or self-treatment."
|
| 91 |
+
]
|
| 92 |
+
})
|
| 93 |
+
|
| 94 |
+
# =======================================
|
| 95 |
+
# π¬ /ask Route
|
| 96 |
+
# =======================================
|
| 97 |
+
@app.route('/ask', methods=['POST'])
|
| 98 |
+
def ask():
|
| 99 |
+
data = request.json
|
| 100 |
+
question = data.get("question", "")
|
| 101 |
+
condition = data.get("condition", "")
|
| 102 |
+
|
| 103 |
+
if not question:
|
| 104 |
+
return jsonify({"answer": "Please ask a valid question."}), 400
|
| 105 |
+
|
| 106 |
+
messages = [
|
| 107 |
+
{
|
| 108 |
+
"role": "user",
|
| 109 |
+
"content": f"A user may have {condition}. They asked: '{question}'. Respond like a helpful AI medical assistant."
|
| 110 |
+
}
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
response = client.chat_completion(
|
| 115 |
+
messages=messages,
|
| 116 |
+
max_tokens=200
|
| 117 |
+
)
|
| 118 |
+
answer = response.choices[0]["message"]["content"]
|
| 119 |
+
return jsonify({"answer": answer.strip()})
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return jsonify({"answer": f"Error communicating with Hugging Face: {e}"}), 500
|
| 122 |
+
|
| 123 |
+
# Add route for placeholder images if needed
|
| 124 |
+
@app.route('/api/placeholder/<width>/<height>')
|
| 125 |
+
def placeholder(width, height):
|
| 126 |
+
# This is a simple implementation - you might want to generate an actual placeholder image
|
| 127 |
+
# For now, we'll just serve a static placeholder
|
| 128 |
+
return send_from_directory('static/images', 'placeholder.jpg')
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
if __name__ == '__main__':
|
| 132 |
+
app.run(debug=True)
|