Spaces:
Running
on
Zero
Running
on
Zero
| import sys | |
| sys.path.append('./') | |
| import os | |
| import cv2 | |
| import random | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline | |
| import torch | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from ip_adapter import IPAdapterXL | |
| import os | |
| os.system("git lfs install") | |
| os.system("git clone https://huggingface.co/h94/IP-Adapter") | |
| os.system("mv IP-Adapter/sdxl_models sdxl_models") | |
| # global variable | |
| MAX_SEED = np.iinfo(np.int32).max | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
| # initialization | |
| base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| image_encoder_path = "sdxl_models/image_encoder" | |
| ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" | |
| controlnet_path = "diffusers/controlnet-canny-sdxl-1.0" | |
| controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=torch.float16).to(device) | |
| # load SDXL pipeline | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| base_model_path, | |
| controlnet=controlnet, | |
| torch_dtype=torch.float16, | |
| add_watermarker=False, | |
| ) | |
| # load ip-adapter | |
| # target_blocks=["block"] for original IP-Adapter | |
| # target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
| # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
| ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def resize_img( | |
| input_image, | |
| max_side=1280, | |
| min_side=1024, | |
| size=None, | |
| pad_to_max_side=False, | |
| mode=Image.BILINEAR, | |
| base_pixel_number=64, | |
| ): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio * w), round(ratio * h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[ | |
| offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new | |
| ] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| def get_example(): | |
| case = [ | |
| [ | |
| "./assets/0.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0 | |
| ], | |
| [ | |
| "./assets/1.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0 | |
| ], | |
| [ | |
| "./assets/2.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0 | |
| ], | |
| [ | |
| "./assets/3.jpg", | |
| None, | |
| "a cat, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.0 | |
| ], | |
| [ | |
| "./assets/2.jpg", | |
| "./assets/yann-lecun.jpg", | |
| "a man, masterpiece, best quality, high quality", | |
| 1.0, | |
| 0.6 | |
| ], | |
| ] | |
| return case | |
| def run_for_examples(style_image, source_image, prompt, scale, control_scale): | |
| return create_image( | |
| image_pil=style_image, | |
| input_image=source_image, | |
| prompt=prompt, | |
| n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
| scale=scale, | |
| control_scale=control_scale, | |
| guidance_scale=5, | |
| num_samples=1, | |
| num_inference_steps=20, | |
| seed=42, | |
| target="Load only style blocks", | |
| neg_content_prompt="", | |
| neg_content_scale=0, | |
| ) | |
| def create_image(image_pil, | |
| input_image, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_samples, | |
| num_inference_steps, | |
| seed, | |
| target="Load only style blocks", | |
| neg_content_prompt=None, | |
| neg_content_scale=0): | |
| if target =="Load original IP-Adapter": | |
| # target_blocks=["blocks"] for original IP-Adapter | |
| ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]) | |
| elif target=="Load only style blocks": | |
| # target_blocks=["up_blocks.0.attentions.1"] for style blocks only | |
| ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) | |
| elif target == "Load style+layout block": | |
| # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks | |
| ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]) | |
| if input_image is not None: | |
| input_image = resize_img(input_image, max_side=1024) | |
| cv_input_image = pil_to_cv2(input_image) | |
| detected_map = cv2.Canny(cv_input_image, 50, 200) | |
| canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)) | |
| else: | |
| canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255)) | |
| control_scale = 0 | |
| if float(control_scale) == 0: | |
| canny_map = canny_map.resize((1024,1024)) | |
| if len(neg_content_prompt) > 0 and neg_content_scale != 0: | |
| images = ip_model.generate(pil_image=image_pil, | |
| prompt=prompt, | |
| negative_prompt=n_prompt, | |
| scale=scale, | |
| guidance_scale=guidance_scale, | |
| num_samples=num_samples, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| image=canny_map, | |
| controlnet_conditioning_scale=float(control_scale), | |
| neg_content_prompt=neg_content_prompt, | |
| neg_content_scale=neg_content_scale | |
| ) | |
| else: | |
| images = ip_model.generate(pil_image=image_pil, | |
| prompt=prompt, | |
| negative_prompt=n_prompt, | |
| scale=scale, | |
| guidance_scale=guidance_scale, | |
| num_samples=num_samples, | |
| num_inference_steps=num_inference_steps, | |
| seed=seed, | |
| image=canny_map, | |
| controlnet_conditioning_scale=float(control_scale), | |
| ) | |
| return images | |
| def pil_to_cv2(image_pil): | |
| image_np = np.array(image_pil) | |
| image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
| return image_cv2 | |
| # Description | |
| title = r""" | |
| <h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1> | |
| """ | |
| description = r""" | |
| <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'><b>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</b></a>.<br> | |
| How to use:<br> | |
| 1. Upload a style image. | |
| 2. Set stylization mode, only use style block by default. | |
| 2. Enter a text prompt, as done in normal text-to-image models. | |
| 3. Click the <b>Submit</b> button to begin customization. | |
| 4. Share your stylized photo with your friends and enjoy! 😊 | |
| Advanced usage:<br> | |
| 1. Click advanced options. | |
| 2. Upload another source image for image-based stylization using ControlNet. | |
| 3. Enter negative content prompt to avoid content leakage. | |
| """ | |
| article = r""" | |
| --- | |
| 📝 **Citation** | |
| <br> | |
| If our work is helpful for your research or applications, please cite us via: | |
| ```bibtex | |
| @article{wang2024instantstyle, | |
| title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
| author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
| journal={arXiv preprint arXiv:2404.02733}, | |
| year={2024} | |
| } | |
| ``` | |
| 📧 **Contact** | |
| <br> | |
| If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>. | |
| """ | |
| block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) | |
| with block: | |
| # description | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Tabs(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_pil = gr.Image(label="Style Image", type='pil') | |
| target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"], | |
| value="Load only style blocks", | |
| label="Style mode") | |
| prompt = gr.Textbox(label="Prompt", | |
| value="a cat, masterpiece, best quality, high quality") | |
| scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale") | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| with gr.Column(): | |
| src_image_pil = gr.Image(label="Source Image (optional)", type='pil') | |
| control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale") | |
| n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry") | |
| neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="") | |
| neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale") | |
| guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale") | |
| num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples") | |
| num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps") | |
| seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value") | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_button = gr.Button("Generate Image") | |
| with gr.Column(): | |
| generated_image = gr.Gallery(label="Generated Image") | |
| generate_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=create_image, | |
| inputs=[image_pil, | |
| src_image_pil, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_samples, | |
| num_inference_steps, | |
| seed, | |
| target, | |
| neg_content_prompt, | |
| neg_content_scale], | |
| outputs=[generated_image]) | |
| gr.Examples( | |
| examples=get_example(), | |
| inputs=[image_pil, src_image_pil, prompt, scale, control_scale], | |
| fn=run_for_examples, | |
| outputs=[generated_image], | |
| cache_examples=True, | |
| ) | |
| gr.Markdown(article) | |
| block.launch() |