Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,6 +55,32 @@ def rewrite_prompt(input_prompt):
|
|
| 55 |
|
| 56 |
# --- 2. Preprocessor Functions ---
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def extract_canny(input_image):
|
| 59 |
image = np.array(input_image)
|
| 60 |
image = cv2.Canny(image, 100, 200)
|
|
@@ -104,7 +130,7 @@ anyline = AnylineDetector.from_pretrained("TheMistoAI/MistoLine", filename="MTEE
|
|
| 104 |
print("All models loaded.")
|
| 105 |
|
| 106 |
def get_control_image(input_image, control_mode):
|
| 107 |
-
"""A master function to select and run the correct preprocessor."""
|
| 108 |
if control_mode == "Canny":
|
| 109 |
return extract_canny(input_image)
|
| 110 |
elif control_mode == "Soft Edge":
|
|
@@ -143,6 +169,8 @@ def generate(
|
|
| 143 |
if not prompt:
|
| 144 |
raise gr.Error("Please enter a prompt.")
|
| 145 |
|
|
|
|
|
|
|
| 146 |
if randomize_seed:
|
| 147 |
seed = random.randint(0, MAX_SEED)
|
| 148 |
|
|
@@ -151,7 +179,7 @@ def generate(
|
|
| 151 |
print(f"Original prompt: {prompt}\nEnhanced prompt: {enhanced_prompt}")
|
| 152 |
prompt = enhanced_prompt
|
| 153 |
|
| 154 |
-
control_image = get_control_image(
|
| 155 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 156 |
|
| 157 |
generated_image = pipe(
|
|
@@ -159,8 +187,8 @@ def generate(
|
|
| 159 |
negative_prompt=negative_prompt,
|
| 160 |
control_image=control_image,
|
| 161 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 162 |
-
width=
|
| 163 |
-
height=
|
| 164 |
num_inference_steps=int(num_inference_steps),
|
| 165 |
guidance_scale=guidance_scale,
|
| 166 |
generator=generator,
|
|
@@ -229,8 +257,4 @@ with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
|
| 229 |
)
|
| 230 |
|
| 231 |
if __name__ == "__main__":
|
| 232 |
-
if not os.path.exists("assets"):
|
| 233 |
-
os.makedirs("assets")
|
| 234 |
-
print("Created 'assets' directory. Please add example images for the Gradio examples to work.")
|
| 235 |
-
|
| 236 |
demo.launch()
|
|
|
|
| 55 |
|
| 56 |
# --- 2. Preprocessor Functions ---
|
| 57 |
|
| 58 |
+
def resize_image(input_image, max_size=1024):
|
| 59 |
+
"""
|
| 60 |
+
Resizes an image so that its longest side is `max_size` pixels,
|
| 61 |
+
maintaining aspect ratio. The final dimensions are made divisible by 8.
|
| 62 |
+
"""
|
| 63 |
+
w, h = input_image.size
|
| 64 |
+
aspect_ratio = w / h
|
| 65 |
+
|
| 66 |
+
if w > h:
|
| 67 |
+
new_w = max_size
|
| 68 |
+
new_h = int(new_w / aspect_ratio)
|
| 69 |
+
else:
|
| 70 |
+
new_h = max_size
|
| 71 |
+
new_w = int(new_h * aspect_ratio)
|
| 72 |
+
|
| 73 |
+
# Make dimensions divisible by 8
|
| 74 |
+
new_w = new_w - (new_w % 8)
|
| 75 |
+
new_h = new_h - (new_h % 8)
|
| 76 |
+
|
| 77 |
+
# Handle potential zero dimensions after rounding
|
| 78 |
+
if new_w == 0: new_w = 8
|
| 79 |
+
if new_h == 0: new_h = 8
|
| 80 |
+
|
| 81 |
+
return input_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
def extract_canny(input_image):
|
| 85 |
image = np.array(input_image)
|
| 86 |
image = cv2.Canny(image, 100, 200)
|
|
|
|
| 130 |
print("All models loaded.")
|
| 131 |
|
| 132 |
def get_control_image(input_image, control_mode):
|
| 133 |
+
"""A master function to select and run the correct preprocessor on a pre-resized image."""
|
| 134 |
if control_mode == "Canny":
|
| 135 |
return extract_canny(input_image)
|
| 136 |
elif control_mode == "Soft Edge":
|
|
|
|
| 169 |
if not prompt:
|
| 170 |
raise gr.Error("Please enter a prompt.")
|
| 171 |
|
| 172 |
+
resized_image = resize_image(image, max_size=1024)
|
| 173 |
+
|
| 174 |
if randomize_seed:
|
| 175 |
seed = random.randint(0, MAX_SEED)
|
| 176 |
|
|
|
|
| 179 |
print(f"Original prompt: {prompt}\nEnhanced prompt: {enhanced_prompt}")
|
| 180 |
prompt = enhanced_prompt
|
| 181 |
|
| 182 |
+
control_image = get_control_image(resized_image, conditioning)
|
| 183 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 184 |
|
| 185 |
generated_image = pipe(
|
|
|
|
| 187 |
negative_prompt=negative_prompt,
|
| 188 |
control_image=control_image,
|
| 189 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 190 |
+
width=resized_image.width,
|
| 191 |
+
height=resized_image.height,
|
| 192 |
num_inference_steps=int(num_inference_steps),
|
| 193 |
guidance_scale=guidance_scale,
|
| 194 |
generator=generator,
|
|
|
|
| 257 |
)
|
| 258 |
|
| 259 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
demo.launch()
|