Spaces:
Running
on
Zero
Running
on
Zero
| # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from diffusers.models.embeddings import Timesteps, TimestepEmbedding | |
| def get_timestep_embedding( | |
| timesteps: torch.Tensor, | |
| embedding_dim: int, | |
| flip_sin_to_cos: bool = False, | |
| downscale_freq_shift: float = 1, | |
| scale: float = 1, | |
| max_period: int = 10000, | |
| ): | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
| :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the | |
| embeddings. :return: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | |
| half_dim = embedding_dim // 2 | |
| exponent = -math.log(max_period) * torch.arange( | |
| start=0, end=half_dim, dtype=torch.float32, device=timesteps.device | |
| ) | |
| exponent = exponent / (half_dim - downscale_freq_shift) | |
| emb = torch.exp(exponent) | |
| emb = timesteps[:, None].float() * emb[None, :] | |
| # scale embeddings | |
| emb = scale * emb | |
| # concat sine and cosine embeddings | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
| # flip sine and cosine embeddings | |
| if flip_sin_to_cos: | |
| emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | |
| # zero pad | |
| if embedding_dim % 2 == 1: | |
| emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
| return emb | |
| # FFN | |
| def FeedForward(dim, mult=4): | |
| inner_dim = int(dim * mult) | |
| return nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, inner_dim, bias=False), | |
| nn.GELU(), | |
| nn.Linear(inner_dim, dim, bias=False), | |
| ) | |
| def reshape_tensor(x, heads): | |
| bs, length, width = x.shape | |
| #(bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
| x = x.view(bs, length, heads, -1) | |
| # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
| x = x.transpose(1, 2) | |
| # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
| x = x.reshape(bs, heads, length, -1) | |
| return x | |
| class PerceiverAttention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents, shift=None, scale=None): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, n2, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| if shift is not None and scale is not None: | |
| latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| b, l, _ = latents.shape | |
| q = self.to_q(latents) | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q = reshape_tensor(q, self.heads) | |
| k = reshape_tensor(k, self.heads) | |
| v = reshape_tensor(v, self.heads) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| out = out.permute(0, 2, 1, 3).reshape(b, l, -1) | |
| return self.to_out(out) | |
| class Resampler(nn.Module): | |
| def __init__( | |
| self, | |
| dim=1024, | |
| depth=8, | |
| dim_head=64, | |
| heads=16, | |
| num_queries=8, | |
| embedding_dim=768, | |
| output_dim=1024, | |
| ff_mult=4, | |
| *args, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
| self.proj_in = nn.Linear(embedding_dim, dim) | |
| self.proj_out = nn.Linear(dim, output_dim) | |
| self.norm_out = nn.LayerNorm(output_dim) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| def forward(self, x): | |
| latents = self.latents.repeat(x.size(0), 1, 1) | |
| x = self.proj_in(x) | |
| for attn, ff in self.layers: | |
| latents = attn(x, latents) + latents | |
| latents = ff(latents) + latents | |
| latents = self.proj_out(latents) | |
| return self.norm_out(latents) | |
| class TimeResampler(nn.Module): | |
| def __init__( | |
| self, | |
| dim=1024, | |
| depth=8, | |
| dim_head=64, | |
| heads=16, | |
| num_queries=8, | |
| embedding_dim=768, | |
| output_dim=1024, | |
| ff_mult=4, | |
| timestep_in_dim=320, | |
| timestep_flip_sin_to_cos=True, | |
| timestep_freq_shift=0, | |
| ): | |
| super().__init__() | |
| self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
| self.proj_in = nn.Linear(embedding_dim, dim) | |
| self.proj_out = nn.Linear(dim, output_dim) | |
| self.norm_out = nn.LayerNorm(output_dim) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| # msa | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| # ff | |
| FeedForward(dim=dim, mult=ff_mult), | |
| # adaLN | |
| nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True)) | |
| ] | |
| ) | |
| ) | |
| # time | |
| self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift) | |
| self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu") | |
| # adaLN | |
| # self.adaLN_modulation = nn.Sequential( | |
| # nn.SiLU(), | |
| # nn.Linear(timestep_out_dim, 6 * timestep_out_dim, bias=True) | |
| # ) | |
| def forward(self, x, timestep, need_temb=False): | |
| timestep_emb = self.embedding_time(x, timestep) # bs, dim | |
| latents = self.latents.repeat(x.size(0), 1, 1) | |
| x = self.proj_in(x) | |
| x = x + timestep_emb[:, None] | |
| for attn, ff, adaLN_modulation in self.layers: | |
| shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1) | |
| latents = attn(x, latents, shift_msa, scale_msa) + latents | |
| res = latents | |
| for idx_ff in range(len(ff)): | |
| layer_ff = ff[idx_ff] | |
| latents = layer_ff(latents) | |
| if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN | |
| latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
| latents = latents + res | |
| # latents = ff(latents) + latents | |
| latents = self.proj_out(latents) | |
| latents = self.norm_out(latents) | |
| if need_temb: | |
| return latents, timestep_emb | |
| else: | |
| return latents | |
| def embedding_time(self, sample, timestep): | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, None) | |
| return emb | |
| if __name__ == '__main__': | |
| model = TimeResampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=16, | |
| embedding_dim=512, | |
| output_dim=2048, | |
| ff_mult=4, | |
| timestep_in_dim=320, | |
| timestep_flip_sin_to_cos=True, | |
| timestep_freq_shift=0, | |
| in_channel_extra_emb=2048, | |
| ) | |