Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| import os | |
| from models.transformer_sd3 import SD3Transformer2DModel | |
| from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline | |
| from transformers import AutoProcessor, SiglipVisionModel | |
| from huggingface_hub import hf_hub_download | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_path = 'stabilityai/stable-diffusion-3.5-large' | |
| image_encoder_path = "google/siglip-so400m-patch14-384" | |
| ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin") | |
| transformer = SD3Transformer2DModel.from_pretrained( | |
| model_path, | |
| subfolder="transformer", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| pipe = StableDiffusion3Pipeline.from_pretrained( | |
| model_path, | |
| transformer=transformer, | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda") | |
| pipe.init_ipadapter( | |
| ip_adapter_path=ipadapter_path, | |
| image_encoder_path=image_encoder_path, | |
| nb_token=64, | |
| ) | |
| def resize_img(image, max_size=1024): | |
| width, height = image.size | |
| scaling_factor = min(max_size / width, max_size / height) | |
| new_width = int(width * scaling_factor) | |
| new_height = int(height * scaling_factor) | |
| return image.resize((new_width, new_height), Image.LANCZOS) | |
| def process_image( | |
| image, | |
| prompt, | |
| scale, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| #pipe.to("cuda") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if image is None: | |
| return None, seed | |
| # Convert to PIL Image if needed | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| # Resize image | |
| image = resize_img(image) | |
| # Generate the image | |
| result = pipe( | |
| clip_image=image, | |
| prompt=prompt, | |
| ipadapter_scale=scale, | |
| width=width, | |
| height=height, | |
| generator=torch.Generator().manual_seed(seed) | |
| ).images[0] | |
| return result, seed | |
| # UI CSS | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| """ | |
| # Create the Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# InstantX's SD3.5 IP Adapter") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="pil" | |
| ) | |
| scale = gr.Slider( | |
| label="Image Scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.7, | |
| ) | |
| prompt = gr.Text( | |
| label="Prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| run_button = gr.Button("Generate", variant="primary") | |
| with gr.Column(): | |
| result = gr.Image(label="Result") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| run_button.click( | |
| fn=process_image, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| scale, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |