Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,26 +8,32 @@ import os
|
|
| 8 |
from pipeline_flux_ipa import FluxPipeline
|
| 9 |
from transformer_flux import FluxTransformer2DModel
|
| 10 |
from attention_processor import IPAFluxAttnProcessor2_0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from transformers import AutoProcessor, SiglipVisionModel
|
| 12 |
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
|
|
|
| 15 |
# Constants
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
MAX_IMAGE_SIZE = 1024
|
| 18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
|
|
|
| 20 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 21 |
-
ipadapter_path = hf_hub_download(repo_id="InstantX/
|
| 22 |
|
| 23 |
-
transformer =
|
| 24 |
-
|
| 25 |
subfolder="transformer",
|
| 26 |
torch_dtype=torch.bfloat16
|
| 27 |
)
|
| 28 |
|
| 29 |
pipe = FluxPipeline.from_pretrained(
|
| 30 |
-
|
| 31 |
transformer=transformer,
|
| 32 |
torch_dtype=torch.bfloat16
|
| 33 |
)
|
|
@@ -88,7 +94,7 @@ css = """
|
|
| 88 |
# Create the Gradio interface
|
| 89 |
with gr.Blocks(css=css) as demo:
|
| 90 |
with gr.Column(elem_id="col-container"):
|
| 91 |
-
gr.Markdown("# InstantX's
|
| 92 |
|
| 93 |
with gr.Row():
|
| 94 |
with gr.Column():
|
|
|
|
| 8 |
from pipeline_flux_ipa import FluxPipeline
|
| 9 |
from transformer_flux import FluxTransformer2DModel
|
| 10 |
from attention_processor import IPAFluxAttnProcessor2_0
|
| 11 |
+
|
| 12 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
| 13 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 14 |
+
|
| 15 |
from transformers import AutoProcessor, SiglipVisionModel
|
| 16 |
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
|
| 19 |
+
|
| 20 |
# Constants
|
| 21 |
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
MAX_IMAGE_SIZE = 1024
|
| 23 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
+
model_path = 'stabilityai/stable-diffusion-3.5-large'
|
| 26 |
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 27 |
+
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
| 28 |
|
| 29 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
| 30 |
+
model_path,
|
| 31 |
subfolder="transformer",
|
| 32 |
torch_dtype=torch.bfloat16
|
| 33 |
)
|
| 34 |
|
| 35 |
pipe = FluxPipeline.from_pretrained(
|
| 36 |
+
model_path,
|
| 37 |
transformer=transformer,
|
| 38 |
torch_dtype=torch.bfloat16
|
| 39 |
)
|
|
|
|
| 94 |
# Create the Gradio interface
|
| 95 |
with gr.Blocks(css=css) as demo:
|
| 96 |
with gr.Column(elem_id="col-container"):
|
| 97 |
+
gr.Markdown("# InstantX's SD3.5 IP Adapter")
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|