refine (#12)
Browse files- refine (c701b95aa79c69ed8410f715ac8ccc6a251da091)
Co-authored-by: Yimeng Zhang <DamonDemon@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -177,13 +177,154 @@ def select_columns(df: pd.DataFrame, columns_1: list) -> pd.DataFrame:
|
|
| 177 |
|
| 178 |
demo = gr.Blocks(css=custom_css)
|
| 179 |
with demo:
|
| 180 |
-
gr.
|
|
|
|
|
|
|
|
|
|
| 181 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 182 |
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
| 183 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="reference-text")
|
| 184 |
|
| 185 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 186 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
with gr.Row():
|
| 188 |
with gr.Column():
|
| 189 |
with gr.Row():
|
|
@@ -202,29 +343,17 @@ with demo:
|
|
| 202 |
|
| 203 |
for i in range(len(files)):
|
| 204 |
if files[i] == "church":
|
| 205 |
-
name = "### [Unlearned
|
| 206 |
csv_path = './assets/'+files[i]+'.csv'
|
| 207 |
elif files[i] == 'garbage':
|
| 208 |
-
name = "### [Unlearned
|
| 209 |
csv_path = './assets/'+files[i]+'.csv'
|
| 210 |
elif files[i] == 'tench':
|
| 211 |
-
name = "### [Unlearned
|
| 212 |
csv_path = './assets/'+files[i]+'.csv'
|
| 213 |
elif files[i] == 'parachute':
|
| 214 |
-
name = "### [Unlearned
|
| 215 |
csv_path = './assets/'+files[i]+'.csv'
|
| 216 |
-
elif files[i] == 'vangogh':
|
| 217 |
-
name = "### [Unlearned Style] "+" Van Gogh"
|
| 218 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 219 |
-
elif files[i] == 'nudity':
|
| 220 |
-
name = "### Unlearned Concepts "+" Nudity"
|
| 221 |
-
csv_path = './assets/'+files[i]+'.csv'
|
| 222 |
-
# elif files[i] == 'violence':
|
| 223 |
-
# name = "### Unlearned Concepts "+" Violence"
|
| 224 |
-
# csv_path = './assets/'+files[i]+'.csv'
|
| 225 |
-
# elif files[i] == 'illegal_activity':
|
| 226 |
-
# name = "### Unlearned Concepts "+" Illgal Activity"
|
| 227 |
-
# csv_path = './assets/'+files[i]+'.csv'
|
| 228 |
|
| 229 |
|
| 230 |
gr.Markdown(name)
|
|
|
|
| 177 |
|
| 178 |
demo = gr.Blocks(css=custom_css)
|
| 179 |
with demo:
|
| 180 |
+
with gr.Row():
|
| 181 |
+
gr.Image("./assets/logo.png", height="175px", width="675px", scale=0.2,
|
| 182 |
+
show_download_button=False, container=False)
|
| 183 |
+
gr.HTML(TITLE, elem_id="title")
|
| 184 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 185 |
gr.Markdown(EVALUATION_QUEUE_TEXT,elem_classes="eval-text")
|
| 186 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="reference-text")
|
| 187 |
|
| 188 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 189 |
+
with gr.TabItem("π NSFW", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=0):
|
| 190 |
+
files = ['nudity']
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column():
|
| 193 |
+
with gr.Row():
|
| 194 |
+
search_bar = gr.Textbox(
|
| 195 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 196 |
+
show_label=False,
|
| 197 |
+
elem_id="search-bar",
|
| 198 |
+
)
|
| 199 |
+
with gr.Row():
|
| 200 |
+
model1_column = gr.CheckboxGroup(
|
| 201 |
+
label="Evaluation Metrics",
|
| 202 |
+
choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'],
|
| 203 |
+
interactive=True,
|
| 204 |
+
elem_id="column-select",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
for i in range(len(files)):
|
| 208 |
+
|
| 209 |
+
if files[i] == 'nudity':
|
| 210 |
+
name = "### [Unlearned Concept]: "+" Nudity"
|
| 211 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 212 |
+
# elif files[i] == 'violence':
|
| 213 |
+
# name = "### Unlearned Concepts "+" Violence"
|
| 214 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
| 215 |
+
# elif files[i] == 'illegal_activity':
|
| 216 |
+
# name = "### Unlearned Concepts "+" Illgal Activity"
|
| 217 |
+
# csv_path = './assets/'+files[i]+'.csv'
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
gr.Markdown(name)
|
| 221 |
+
df_results = load_data(csv_path)
|
| 222 |
+
df_results_init = df_results.copy()[show_columns]
|
| 223 |
+
leaderboard_table = gr.components.Dataframe(
|
| 224 |
+
value = df_results,
|
| 225 |
+
datatype = TYPES,
|
| 226 |
+
elem_id = "leaderboard-table",
|
| 227 |
+
interactive = False,
|
| 228 |
+
visible=True,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 233 |
+
value=df_results_init,
|
| 234 |
+
# value=df_results,
|
| 235 |
+
interactive=False,
|
| 236 |
+
visible=False,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
search_bar.submit(
|
| 240 |
+
update_table,
|
| 241 |
+
[
|
| 242 |
+
|
| 243 |
+
hidden_leaderboard_table_for_search,
|
| 244 |
+
model1_column,
|
| 245 |
+
search_bar,
|
| 246 |
+
],
|
| 247 |
+
leaderboard_table,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
for selector in [model1_column]:
|
| 251 |
+
selector.change(
|
| 252 |
+
update_table,
|
| 253 |
+
[
|
| 254 |
+
hidden_leaderboard_table_for_search,
|
| 255 |
+
model1_column,
|
| 256 |
+
search_bar,
|
| 257 |
+
],
|
| 258 |
+
leaderboard_table,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
with gr.TabItem("π¨ Style", elem_id="Style", id=1):
|
| 262 |
+
files = ['vangogh']
|
| 263 |
+
with gr.Row():
|
| 264 |
+
with gr.Column():
|
| 265 |
+
with gr.Row():
|
| 266 |
+
search_bar = gr.Textbox(
|
| 267 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 268 |
+
show_label=False,
|
| 269 |
+
elem_id="search-bar",
|
| 270 |
+
)
|
| 271 |
+
with gr.Row():
|
| 272 |
+
model1_column = gr.CheckboxGroup(
|
| 273 |
+
label="Evaluation Metrics",
|
| 274 |
+
choices=['Pre-ASR','Post-ASR','FID','CLIP-Score'],
|
| 275 |
+
interactive=True,
|
| 276 |
+
elem_id="column-select",
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
for i in range(len(files)):
|
| 280 |
+
|
| 281 |
+
if files[i] == 'vangogh':
|
| 282 |
+
name = "### [Unlearned Style]: "+" Van Gogh"
|
| 283 |
+
csv_path = './assets/'+files[i]+'.csv'
|
| 284 |
+
|
| 285 |
+
gr.Markdown(name)
|
| 286 |
+
df_results = load_data(csv_path)
|
| 287 |
+
df_results_init = df_results.copy()[show_columns]
|
| 288 |
+
leaderboard_table = gr.components.Dataframe(
|
| 289 |
+
value = df_results,
|
| 290 |
+
datatype = TYPES,
|
| 291 |
+
elem_id = "leaderboard-table",
|
| 292 |
+
interactive = False,
|
| 293 |
+
visible=True,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 298 |
+
value=df_results_init,
|
| 299 |
+
# value=df_results,
|
| 300 |
+
interactive=False,
|
| 301 |
+
visible=False,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
search_bar.submit(
|
| 305 |
+
update_table,
|
| 306 |
+
[
|
| 307 |
+
|
| 308 |
+
hidden_leaderboard_table_for_search,
|
| 309 |
+
model1_column,
|
| 310 |
+
search_bar,
|
| 311 |
+
],
|
| 312 |
+
leaderboard_table,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
for selector in [model1_column]:
|
| 316 |
+
selector.change(
|
| 317 |
+
update_table,
|
| 318 |
+
[
|
| 319 |
+
hidden_leaderboard_table_for_search,
|
| 320 |
+
model1_column,
|
| 321 |
+
search_bar,
|
| 322 |
+
],
|
| 323 |
+
leaderboard_table,
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
with gr.TabItem("πͺ Object", elem_id="UnlearnDiffAtk-benchmark-tab-table", id=2):
|
| 327 |
+
files = ['church','garbage','parachute','tench']
|
| 328 |
with gr.Row():
|
| 329 |
with gr.Column():
|
| 330 |
with gr.Row():
|
|
|
|
| 343 |
|
| 344 |
for i in range(len(files)):
|
| 345 |
if files[i] == "church":
|
| 346 |
+
name = "### [Unlearned Object]: "+" Church"
|
| 347 |
csv_path = './assets/'+files[i]+'.csv'
|
| 348 |
elif files[i] == 'garbage':
|
| 349 |
+
name = "### [Unlearned Object]: "+" Garbage"
|
| 350 |
csv_path = './assets/'+files[i]+'.csv'
|
| 351 |
elif files[i] == 'tench':
|
| 352 |
+
name = "### [Unlearned Object]: "+" Tench"
|
| 353 |
csv_path = './assets/'+files[i]+'.csv'
|
| 354 |
elif files[i] == 'parachute':
|
| 355 |
+
name = "### [Unlearned Object]: "+" Parachute"
|
| 356 |
csv_path = './assets/'+files[i]+'.csv'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
|
| 359 |
gr.Markdown(name)
|