Spaces:
Running
Running
Update Space (evaluate main: 1a12c674)
Browse files- README.md +3 -4
- adversarial_glue.py +30 -60
README.md
CHANGED
|
@@ -38,7 +38,7 @@ mc_results, = suite.run("gpt2")
|
|
| 38 |
|
| 39 |
The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
|
| 40 |
|
| 41 |
-
`accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
|
| 42 |
|
| 43 |
|
| 44 |
### Values from popular papers
|
|
@@ -47,14 +47,14 @@ The [original GLUE paper](https://huggingface.co/datasets/glue) reported average
|
|
| 47 |
|
| 48 |
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue).
|
| 49 |
|
| 50 |
-
## Examples
|
| 51 |
|
| 52 |
For full example see [HF Evaluate Adversarial Attacks.ipynb](https://github.com/IntelAI/evaluate/blob/develop/notebooks/HF%20Evaluate%20Adversarial%20Attacks.ipynb)
|
| 53 |
|
| 54 |
## Limitations and bias
|
| 55 |
This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue).
|
| 56 |
|
| 57 |
-
While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such.
|
| 58 |
|
| 59 |
## Citation
|
| 60 |
|
|
@@ -66,4 +66,3 @@ While the GLUE dataset is meant to represent "General Language Understanding", t
|
|
| 66 |
year={2021}
|
| 67 |
}
|
| 68 |
```
|
| 69 |
-
|
|
|
|
| 38 |
|
| 39 |
The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
|
| 40 |
|
| 41 |
+
`accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
|
| 42 |
|
| 43 |
|
| 44 |
### Values from popular papers
|
|
|
|
| 47 |
|
| 48 |
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue).
|
| 49 |
|
| 50 |
+
## Examples
|
| 51 |
|
| 52 |
For full example see [HF Evaluate Adversarial Attacks.ipynb](https://github.com/IntelAI/evaluate/blob/develop/notebooks/HF%20Evaluate%20Adversarial%20Attacks.ipynb)
|
| 53 |
|
| 54 |
## Limitations and bias
|
| 55 |
This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue).
|
| 56 |
|
| 57 |
+
While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such.
|
| 58 |
|
| 59 |
## Citation
|
| 60 |
|
|
|
|
| 66 |
year={2021}
|
| 67 |
}
|
| 68 |
```
|
|
|
adversarial_glue.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
|
|
|
|
|
|
| 1 |
from evaluate.evaluation_suite import SubTask
|
| 2 |
from evaluate.visualization import radar_plot
|
| 3 |
|
| 4 |
-
from intel_evaluate_extension.evaluation_suite.model_card_suite import ModelCardSuiteResults
|
| 5 |
|
| 6 |
_HEADER = "GLUE/AdvGlue Evaluation Results"
|
| 7 |
|
|
@@ -27,11 +28,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 27 |
"input_column": "sentence",
|
| 28 |
"label_column": "label",
|
| 29 |
"config_name": "sst2",
|
| 30 |
-
"label_mapping": {
|
| 31 |
-
|
| 32 |
-
"LABEL_1": 1.0
|
| 33 |
-
}
|
| 34 |
-
}
|
| 35 |
),
|
| 36 |
SubTask(
|
| 37 |
task_type="text-classification",
|
|
@@ -43,29 +41,22 @@ class Suite(ModelCardSuiteResults):
|
|
| 43 |
"input_column": "sentence",
|
| 44 |
"label_column": "label",
|
| 45 |
"config_name": "sst2",
|
| 46 |
-
"label_mapping": {
|
| 47 |
-
|
| 48 |
-
"LABEL_1": 1.0
|
| 49 |
-
}
|
| 50 |
-
}
|
| 51 |
),
|
| 52 |
SubTask(
|
| 53 |
task_type="text-classification",
|
| 54 |
data="glue",
|
| 55 |
subset="qqp",
|
| 56 |
split="validation[:5]",
|
| 57 |
-
|
| 58 |
args_for_task={
|
| 59 |
"metric": "glue",
|
| 60 |
"input_column": "question1",
|
| 61 |
"second_input_column": "question2",
|
| 62 |
"label_column": "label",
|
| 63 |
"config_name": "qqp",
|
| 64 |
-
"label_mapping": {
|
| 65 |
-
|
| 66 |
-
"LABEL_1": 1
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
),
|
| 70 |
SubTask(
|
| 71 |
task_type="text-classification",
|
|
@@ -78,11 +69,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 78 |
"second_input_column": "question2",
|
| 79 |
"label_column": "label",
|
| 80 |
"config_name": "qqp",
|
| 81 |
-
"label_mapping": {
|
| 82 |
-
|
| 83 |
-
"LABEL_1": 1
|
| 84 |
-
}
|
| 85 |
-
}
|
| 86 |
),
|
| 87 |
SubTask(
|
| 88 |
task_type="text-classification",
|
|
@@ -95,11 +83,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 95 |
"second_input_column": "sentence",
|
| 96 |
"label_column": "label",
|
| 97 |
"config_name": "qnli",
|
| 98 |
-
"label_mapping": {
|
| 99 |
-
|
| 100 |
-
"LABEL_1": 1
|
| 101 |
-
}
|
| 102 |
-
}
|
| 103 |
),
|
| 104 |
SubTask(
|
| 105 |
task_type="text-classification",
|
|
@@ -112,11 +97,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 112 |
"second_input_column": "sentence",
|
| 113 |
"label_column": "label",
|
| 114 |
"config_name": "qnli",
|
| 115 |
-
"label_mapping": {
|
| 116 |
-
|
| 117 |
-
"LABEL_1": 1
|
| 118 |
-
}
|
| 119 |
-
}
|
| 120 |
),
|
| 121 |
SubTask(
|
| 122 |
task_type="text-classification",
|
|
@@ -129,11 +111,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 129 |
"second_input_column": "sentence2",
|
| 130 |
"label_column": "label",
|
| 131 |
"config_name": "rte",
|
| 132 |
-
"label_mapping": {
|
| 133 |
-
|
| 134 |
-
"LABEL_1": 1
|
| 135 |
-
}
|
| 136 |
-
}
|
| 137 |
),
|
| 138 |
SubTask(
|
| 139 |
task_type="text-classification",
|
|
@@ -146,11 +125,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 146 |
"second_input_column": "sentence2",
|
| 147 |
"label_column": "label",
|
| 148 |
"config_name": "rte",
|
| 149 |
-
"label_mapping": {
|
| 150 |
-
|
| 151 |
-
"LABEL_1": 1
|
| 152 |
-
}
|
| 153 |
-
}
|
| 154 |
),
|
| 155 |
SubTask(
|
| 156 |
task_type="text-classification",
|
|
@@ -162,12 +138,8 @@ class Suite(ModelCardSuiteResults):
|
|
| 162 |
"input_column": "premise",
|
| 163 |
"second_input_column": "hypothesis",
|
| 164 |
"config_name": "mnli",
|
| 165 |
-
"label_mapping": {
|
| 166 |
-
|
| 167 |
-
"LABEL_1": 1,
|
| 168 |
-
"LABEL_2": 2
|
| 169 |
-
}
|
| 170 |
-
}
|
| 171 |
),
|
| 172 |
SubTask(
|
| 173 |
task_type="text-classification",
|
|
@@ -179,24 +151,22 @@ class Suite(ModelCardSuiteResults):
|
|
| 179 |
"input_column": "premise",
|
| 180 |
"second_input_column": "hypothesis",
|
| 181 |
"config_name": "mnli",
|
| 182 |
-
"label_mapping": {
|
| 183 |
-
|
| 184 |
-
"LABEL_1": 1,
|
| 185 |
-
"LABEL_2": 2
|
| 186 |
-
}
|
| 187 |
-
}
|
| 188 |
),
|
| 189 |
]
|
| 190 |
|
| 191 |
def process_results(self, results):
|
| 192 |
radar_data = [
|
| 193 |
-
{"accuracy " + result["task_name"].split("/")[-1]:
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
def plot_results(self, results, model_or_pipeline):
|
| 200 |
radar_data = self.process_results(results)
|
| 201 |
-
graphic = radar_plot(radar_data, [
|
| 202 |
return graphic
|
|
|
|
| 1 |
+
from intel_evaluate_extension.evaluation_suite.model_card_suite import ModelCardSuiteResults
|
| 2 |
+
|
| 3 |
from evaluate.evaluation_suite import SubTask
|
| 4 |
from evaluate.visualization import radar_plot
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
_HEADER = "GLUE/AdvGlue Evaluation Results"
|
| 8 |
|
|
|
|
| 28 |
"input_column": "sentence",
|
| 29 |
"label_column": "label",
|
| 30 |
"config_name": "sst2",
|
| 31 |
+
"label_mapping": {"LABEL_0": 0.0, "LABEL_1": 1.0},
|
| 32 |
+
},
|
|
|
|
|
|
|
|
|
|
| 33 |
),
|
| 34 |
SubTask(
|
| 35 |
task_type="text-classification",
|
|
|
|
| 41 |
"input_column": "sentence",
|
| 42 |
"label_column": "label",
|
| 43 |
"config_name": "sst2",
|
| 44 |
+
"label_mapping": {"LABEL_0": 0.0, "LABEL_1": 1.0},
|
| 45 |
+
},
|
|
|
|
|
|
|
|
|
|
| 46 |
),
|
| 47 |
SubTask(
|
| 48 |
task_type="text-classification",
|
| 49 |
data="glue",
|
| 50 |
subset="qqp",
|
| 51 |
split="validation[:5]",
|
|
|
|
| 52 |
args_for_task={
|
| 53 |
"metric": "glue",
|
| 54 |
"input_column": "question1",
|
| 55 |
"second_input_column": "question2",
|
| 56 |
"label_column": "label",
|
| 57 |
"config_name": "qqp",
|
| 58 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 59 |
+
},
|
|
|
|
|
|
|
|
|
|
| 60 |
),
|
| 61 |
SubTask(
|
| 62 |
task_type="text-classification",
|
|
|
|
| 69 |
"second_input_column": "question2",
|
| 70 |
"label_column": "label",
|
| 71 |
"config_name": "qqp",
|
| 72 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 73 |
+
},
|
|
|
|
|
|
|
|
|
|
| 74 |
),
|
| 75 |
SubTask(
|
| 76 |
task_type="text-classification",
|
|
|
|
| 83 |
"second_input_column": "sentence",
|
| 84 |
"label_column": "label",
|
| 85 |
"config_name": "qnli",
|
| 86 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 87 |
+
},
|
|
|
|
|
|
|
|
|
|
| 88 |
),
|
| 89 |
SubTask(
|
| 90 |
task_type="text-classification",
|
|
|
|
| 97 |
"second_input_column": "sentence",
|
| 98 |
"label_column": "label",
|
| 99 |
"config_name": "qnli",
|
| 100 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 101 |
+
},
|
|
|
|
|
|
|
|
|
|
| 102 |
),
|
| 103 |
SubTask(
|
| 104 |
task_type="text-classification",
|
|
|
|
| 111 |
"second_input_column": "sentence2",
|
| 112 |
"label_column": "label",
|
| 113 |
"config_name": "rte",
|
| 114 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 115 |
+
},
|
|
|
|
|
|
|
|
|
|
| 116 |
),
|
| 117 |
SubTask(
|
| 118 |
task_type="text-classification",
|
|
|
|
| 125 |
"second_input_column": "sentence2",
|
| 126 |
"label_column": "label",
|
| 127 |
"config_name": "rte",
|
| 128 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1},
|
| 129 |
+
},
|
|
|
|
|
|
|
|
|
|
| 130 |
),
|
| 131 |
SubTask(
|
| 132 |
task_type="text-classification",
|
|
|
|
| 138 |
"input_column": "premise",
|
| 139 |
"second_input_column": "hypothesis",
|
| 140 |
"config_name": "mnli",
|
| 141 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
|
| 142 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
),
|
| 144 |
SubTask(
|
| 145 |
task_type="text-classification",
|
|
|
|
| 151 |
"input_column": "premise",
|
| 152 |
"second_input_column": "hypothesis",
|
| 153 |
"config_name": "mnli",
|
| 154 |
+
"label_mapping": {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
|
| 155 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
),
|
| 157 |
]
|
| 158 |
|
| 159 |
def process_results(self, results):
|
| 160 |
radar_data = [
|
| 161 |
+
{"accuracy " + result["task_name"].split("/")[-1]: result["accuracy"] for result in results[::2]},
|
| 162 |
+
{
|
| 163 |
+
"accuracy " + result["task_name"].replace("adv_", "").split("/")[-1]: result["accuracy"]
|
| 164 |
+
for result in results[1::2]
|
| 165 |
+
},
|
| 166 |
+
]
|
| 167 |
+
return radar_plot(radar_data, ["GLUE", "AdvGLUE"])
|
| 168 |
|
| 169 |
def plot_results(self, results, model_or_pipeline):
|
| 170 |
radar_data = self.process_results(results)
|
| 171 |
+
graphic = radar_plot(radar_data, ["GLUE " + model_or_pipeline, "AdvGLUE " + model_or_pipeline])
|
| 172 |
return graphic
|