Spaces:
Runtime error
Runtime error
| from diffusers import StableDiffusionLDM3DPipeline | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import base64 | |
| from io import BytesIO | |
| from tempfile import NamedTemporaryFile | |
| from pathlib import Path | |
| Path("tmp").mkdir(exist_ok=True) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Device is {device}") | |
| torch_type = torch.float16 if device == "cuda" else torch.float32 | |
| pipe = StableDiffusionLDM3DPipeline.from_pretrained( | |
| "Intel/ldm3d-pano", | |
| torch_dtype=torch_type | |
| # , safety_checker=None | |
| ) | |
| pipe.to(device) | |
| if device == "cuda": | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe.enable_model_cpu_offload() | |
| def get_iframe(rgb_path: str, depth_path: str, viewer_mode: str = "6DOF"): | |
| # buffered = BytesIO() | |
| # rgb.convert("RGB").save(buffered, format="JPEG") | |
| # rgb_base64 = base64.b64encode(buffered.getvalue()) | |
| # buffered = BytesIO() | |
| # depth.convert("RGB").save(buffered, format="JPEG") | |
| # depth_base64 = base64.b64encode(buffered.getvalue()) | |
| # rgb_base64 = "data:image/jpeg;base64," + rgb_base64.decode("utf-8") | |
| # depth_base64 = "data:image/jpeg;base64," + depth_base64.decode("utf-8") | |
| rgb_base64 = f"/file={rgb_path}" | |
| depth_base64 = f"/file={depth_path}" | |
| if viewer_mode == "6DOF": | |
| return f"""<iframe src="file=static/three6dof.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>""" | |
| else: | |
| return f"""<iframe src="file=static/depthmap.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>""" | |
| def predict( | |
| prompt: str, | |
| negative_prompt: str, | |
| guidance_scale: float = 5.0, | |
| seed: int = 0, | |
| randomize_seed: bool = True, | |
| ): | |
| generator = torch.Generator() if randomize_seed else torch.manual_seed(seed) | |
| output = pipe( | |
| prompt, | |
| width=1024, | |
| height=512, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| num_inference_steps=50, | |
| ) # type: ignore | |
| rgb_image, depth_image = output.rgb[0], output.depth[0] # type: ignore | |
| with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as rgb_file: | |
| rgb_image.save(rgb_file.name) | |
| rgb_image = rgb_file.name | |
| with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as depth_file: | |
| depth_image.save(depth_file.name) | |
| depth_image = depth_file.name | |
| iframe = get_iframe(rgb_image, depth_image) | |
| return rgb_image, depth_image, generator.seed(), iframe | |
| with gr.Blocks() as block: | |
| gr.Markdown( | |
| """ | |
| ## LDM3d Demo | |
| [Model card](https://huggingface.co/Intel/ldm3d-pano) | |
| [Diffusers docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/ldm3d_diffusion) | |
| For better results, specify "360 view of" or "panoramic view of" in the prompt | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt = gr.Textbox(label="Prompt") | |
| negative_prompt = gr.Textbox(label="Negative Prompt") | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=5.0 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| seed = gr.Slider(label="Seed", minimum=0, | |
| maximum=2**64 - 1, step=1) | |
| generated_seed = gr.Number(label="Generated Seed") | |
| markdown = gr.Markdown(label="Output Box") | |
| with gr.Row(): | |
| new_btn = gr.Button("New Image") | |
| with gr.Column(scale=2): | |
| html = gr.HTML() | |
| with gr.Row(): | |
| rgb = gr.Image(label="RGB Image", type="filepath") | |
| depth = gr.Image(label="Depth Image", type="filepath") | |
| gr.Examples( | |
| examples=[ | |
| ["360 view of a large bedroom", "", 7.0, 42, False]], | |
| inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed], | |
| outputs=[rgb, depth, generated_seed, html], | |
| fn=predict, | |
| cache_examples=True) | |
| new_btn.click( | |
| fn=predict, | |
| inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed], | |
| outputs=[rgb, depth, generated_seed, html], | |
| ) | |
| block.launch( | |
| allowed_paths=["assets/", "static/", "tmp/"] | |
| ) | |