Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -52,39 +52,49 @@ with demo:
|
|
| 52 |
#chat_model_selection = chat_model_dropdown.value
|
| 53 |
chat_model_selection = 'Intel/neural-chat-7b-v1-1'
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# url = inference_endpoint_url
|
| 68 |
-
# params = {"query": query,"selected_model":chat_model}
|
| 69 |
-
# with requests.get(url, json=params, stream=True) as r:
|
| 70 |
-
# for chunk in r.iter_content(chunk_size=1):
|
| 71 |
-
# if chunk:
|
| 72 |
-
# yield chunk.decode()
|
| 73 |
-
#def get_response(query, history):
|
| 74 |
-
# """
|
| 75 |
-
# Wrapper function to call the streaming API and compile the response.
|
| 76 |
-
# """
|
| 77 |
-
# response = ''
|
| 78 |
-
#
|
| 79 |
-
# global chat_model_selection
|
| 80 |
-
#
|
| 81 |
-
# for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
|
| 82 |
-
# if char == '<':
|
| 83 |
-
# break
|
| 84 |
-
# response += char
|
| 85 |
-
# yield response
|
| 86 |
-
#
|
| 87 |
-
#gr.ChatInterface(get_response, retry_btn = None, undo_btn=None, concurrency_limit=inference_concurrency_limit).launch()
|
| 88 |
|
| 89 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 90 |
with gr.TabItem("🏆 LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
|
|
|
|
| 52 |
#chat_model_selection = chat_model_dropdown.value
|
| 53 |
chat_model_selection = 'Intel/neural-chat-7b-v1-1'
|
| 54 |
|
| 55 |
+
def call_api_and_stream_response(query, chat_model):
|
| 56 |
+
"""
|
| 57 |
+
Call the API endpoint and yield characters as they are received.
|
| 58 |
+
This function simulates streaming by yielding characters one by one.
|
| 59 |
+
"""
|
| 60 |
+
url = inference_endpoint_url
|
| 61 |
+
params = {"query": query,"selected_model":chat_model}
|
| 62 |
+
with requests.get(url, json=params, stream=True) as r:
|
| 63 |
+
for chunk in r.iter_content(chunk_size=1):
|
| 64 |
+
if chunk:
|
| 65 |
+
yield chunk.decode()
|
| 66 |
+
def get_response(query, history):
|
| 67 |
+
"""
|
| 68 |
+
Wrapper function to call the streaming API and compile the response.
|
| 69 |
+
"""
|
| 70 |
+
response = ''
|
| 71 |
+
|
| 72 |
+
global chat_model_selection
|
| 73 |
+
|
| 74 |
+
for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
|
| 75 |
+
if char == '<':
|
| 76 |
+
break
|
| 77 |
+
response += char
|
| 78 |
+
yield response
|
| 79 |
+
|
| 80 |
+
with gr.Blocks():
|
| 81 |
+
with gr.Row():
|
| 82 |
+
message_input = gr.Textbox(label="Your message")
|
| 83 |
+
submit_button = gr.Button("Submit")
|
| 84 |
+
clear_button = gr.Button("Clear")
|
| 85 |
+
chatbox = gr.Chatbot()
|
| 86 |
+
|
| 87 |
+
submit_button.click(
|
| 88 |
+
fn=get_response,
|
| 89 |
+
inputs=message_input,
|
| 90 |
+
outputs=chatbox
|
| 91 |
+
)
|
| 92 |
|
| 93 |
+
clear_button.click(
|
| 94 |
+
fn=clear_chat,
|
| 95 |
+
inputs=[],
|
| 96 |
+
outputs=chatbox
|
| 97 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 100 |
with gr.TabItem("🏆 LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
|