Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/Intel/powered_by_intel_llm_leaderboard
Browse files
app.py
CHANGED
|
@@ -3,12 +3,6 @@ import requests
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
import gradio
|
| 6 |
-
|
| 7 |
-
# work around due to HF Spaces bug
|
| 8 |
-
#if gradio.__version__ != '4.16.0':
|
| 9 |
-
# os.system("pip uninstall -y gradio")
|
| 10 |
-
# os.system("pip install gradio==4.16.0")
|
| 11 |
-
|
| 12 |
import gradio as gr
|
| 13 |
|
| 14 |
from info.train_a_model import (
|
|
@@ -77,62 +71,62 @@ with demo:
|
|
| 77 |
except Exception as e:
|
| 78 |
return f"❌Failed to submit due to an error: {str(e)}"
|
| 79 |
|
| 80 |
-
with gr.Accordion("Chat with Top Models on the Leaderboard Here 💬", open=False):
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def get_response(query, history):
|
| 106 |
-
"""
|
| 107 |
-
Wrapper function to call the streaming API and compile the response.
|
| 108 |
-
"""
|
| 109 |
-
response = ''
|
| 110 |
-
for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
|
| 111 |
-
if char == '<': # This is stopping condition; adjust as needed.
|
| 112 |
-
break
|
| 113 |
-
response += char
|
| 114 |
-
yield [(f"🤖 Response from LLM: {chat_model_selection}", response)] # Correct format for Gradio Chatbot
|
| 115 |
#
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 138 |
with gr.TabItem("🏆 LLM Leaderboard", elem_id="llm-benchmark-table", id=0):
|
|
@@ -152,10 +146,10 @@ with demo:
|
|
| 152 |
value=["No Affiliation","Intel Innovator","Student Ambassador","Intel Liftoff", "Intel Engineering", "Other"])
|
| 153 |
|
| 154 |
with gr.Column():
|
| 155 |
-
filter_size = gr.CheckboxGroup(choices=[1,2,3,5,7,13,35,60,70,100],
|
| 156 |
label="Model Sizes (Billion of Parameters)",
|
| 157 |
elem_id="parameter_size",
|
| 158 |
-
value=[1,2,3,5,7,13,35,60,70,100])
|
| 159 |
filter_precision = gr.CheckboxGroup(choices=["fp32","fp16","bf16","int8","fp8", "int4"],
|
| 160 |
label="Model Precision",
|
| 161 |
elem_id="precision",
|
|
@@ -187,7 +181,7 @@ with demo:
|
|
| 187 |
initial_filtered_df = update_df(["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
|
| 188 |
["Intel Developer Cloud","AWS","Azure","Google Cloud Platform","Local"],
|
| 189 |
["No Affiliation","Intel Innovator","Student Ambassador","Intel Liftoff", "Intel Engineering", "Other"],
|
| 190 |
-
[1,2,3,5,7,13,35,60,70,100],
|
| 191 |
["fp32","fp16","bf16","int8","fp8", "int4"],
|
| 192 |
["pretrained","fine-tuned","chat-models","merges/moerges"])
|
| 193 |
|
|
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
import gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
from info.train_a_model import (
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
return f"❌Failed to submit due to an error: {str(e)}"
|
| 73 |
|
| 74 |
+
#with gr.Accordion("Chat with Top Models on the Leaderboard Here 💬", open=False):
|
| 75 |
+
#
|
| 76 |
+
# chat_model_dropdown = gr.Dropdown(
|
| 77 |
+
# choices=VALIDATED_CHAT_MODELS,
|
| 78 |
+
# label="Select a leaderboard model to chat with. ",
|
| 79 |
+
# multiselect=False,
|
| 80 |
+
# value=VALIDATED_CHAT_MODELS[0],
|
| 81 |
+
# interactive=True,
|
| 82 |
+
# )
|
| 83 |
+
#
|
| 84 |
+
# #chat_model_selection = chat_model_dropdown.value
|
| 85 |
+
# chat_model_selection = 'yuriachermann/My_AGI_llama_2_7B'
|
| 86 |
+
#
|
| 87 |
+
# def call_api_and_stream_response(query, chat_model):
|
| 88 |
+
# """
|
| 89 |
+
# Call the API endpoint and yield characters as they are received.
|
| 90 |
+
# This function simulates streaming by yielding characters one by one.
|
| 91 |
+
# """
|
| 92 |
+
# url = inference_endpoint_url
|
| 93 |
+
# params = {"query": query, "selected_model": chat_model}
|
| 94 |
+
# with requests.get(url, json=params, stream=True) as r: # Use params for query parameters
|
| 95 |
+
# for chunk in r.iter_content(chunk_size=1):
|
| 96 |
+
# if chunk:
|
| 97 |
+
# yield chunk.decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
#
|
| 99 |
+
# def get_response(query, history):
|
| 100 |
+
# """
|
| 101 |
+
# Wrapper function to call the streaming API and compile the response.
|
| 102 |
+
# """
|
| 103 |
+
# response = ''
|
| 104 |
+
# for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
|
| 105 |
+
# if char == '<': # This is stopping condition; adjust as needed.
|
| 106 |
+
# break
|
| 107 |
+
# response += char
|
| 108 |
+
# yield [(f"🤖 Response from LLM: {chat_model_selection}", response)] # Correct format for Gradio Chatbot
|
| 109 |
+
##
|
| 110 |
+
#
|
| 111 |
+
# chatbot = gr.Chatbot()
|
| 112 |
+
# msg = gr.Textbox()
|
| 113 |
+
# submit = gr.Button("Submit")
|
| 114 |
+
# clear = gr.Button("Clear")
|
| 115 |
+
# def user(user_message, history):
|
| 116 |
+
# return "", history + [[user_message, None]]
|
| 117 |
+
# def clear_chat(*args):
|
| 118 |
+
# return [] # Returning an empty list to signify clearing the chat, adjust as per Gradio's capabilities
|
| 119 |
+
# submit.click(
|
| 120 |
+
# fn=get_response,
|
| 121 |
+
# inputs=[msg, chatbot],
|
| 122 |
+
# outputs=chatbot
|
| 123 |
+
# )
|
| 124 |
+
# clear.click(
|
| 125 |
+
# fn=clear_chat,
|
| 126 |
+
# inputs=None,
|
| 127 |
+
# outputs=chatbot
|
| 128 |
+
# )
|
| 129 |
+
#
|
| 130 |
|
| 131 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 132 |
with gr.TabItem("🏆 LLM Leaderboard", elem_id="llm-benchmark-table", id=0):
|
|
|
|
| 146 |
value=["No Affiliation","Intel Innovator","Student Ambassador","Intel Liftoff", "Intel Engineering", "Other"])
|
| 147 |
|
| 148 |
with gr.Column():
|
| 149 |
+
filter_size = gr.CheckboxGroup(choices=[1,2,3,5,7,8,13,35,60,70,100],
|
| 150 |
label="Model Sizes (Billion of Parameters)",
|
| 151 |
elem_id="parameter_size",
|
| 152 |
+
value=[1,2,3,5,7,8,13,35,60,70,100])
|
| 153 |
filter_precision = gr.CheckboxGroup(choices=["fp32","fp16","bf16","int8","fp8", "int4"],
|
| 154 |
label="Model Precision",
|
| 155 |
elem_id="precision",
|
|
|
|
| 181 |
initial_filtered_df = update_df(["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
|
| 182 |
["Intel Developer Cloud","AWS","Azure","Google Cloud Platform","Local"],
|
| 183 |
["No Affiliation","Intel Innovator","Student Ambassador","Intel Liftoff", "Intel Engineering", "Other"],
|
| 184 |
+
[1,2,3,5,7,8,13,35,60,70,100],
|
| 185 |
["fp32","fp16","bf16","int8","fp8", "int4"],
|
| 186 |
["pretrained","fine-tuned","chat-models","merges/moerges"])
|
| 187 |
|