Spaces:
Runtime error
Runtime error
Commit
·
8d9ad4b
1
Parent(s):
46f3e87
updating deployment tips
Browse files- app.py +3 -3
- info/deployment.py +48 -108
- info/programs.py +0 -6
app.py
CHANGED
|
@@ -27,9 +27,9 @@ from info.about import(
|
|
| 27 |
ABOUT)
|
| 28 |
from src.processing import filter_benchmarks_table
|
| 29 |
|
| 30 |
-
inference_endpoint_url = os.environ['inference_endpoint_url']
|
| 31 |
-
submission_form_endpoint_url = os.environ['submission_form_endpoint_url']
|
| 32 |
-
inference_concurrency_limit = os.environ['inference_concurrency_limit']
|
| 33 |
|
| 34 |
demo = gr.Blocks()
|
| 35 |
|
|
|
|
| 27 |
ABOUT)
|
| 28 |
from src.processing import filter_benchmarks_table
|
| 29 |
|
| 30 |
+
#inference_endpoint_url = os.environ['inference_endpoint_url']
|
| 31 |
+
#submission_form_endpoint_url = os.environ['submission_form_endpoint_url']
|
| 32 |
+
#inference_concurrency_limit = os.environ['inference_concurrency_limit']
|
| 33 |
|
| 34 |
demo = gr.Blocks()
|
| 35 |
|
info/deployment.py
CHANGED
|
@@ -19,31 +19,15 @@ helps you choose the best option for your specific use case. Happy building!
|
|
| 19 |
<th>Arc GPU</th>
|
| 20 |
<th>Core Ultra</th>
|
| 21 |
</tr>
|
| 22 |
-
<tr>
|
| 23 |
-
<td>Optimum Habana</td>
|
| 24 |
-
<td>🚀</td>
|
| 25 |
-
<td></td>
|
| 26 |
-
<td></td>
|
| 27 |
-
<td></td>
|
| 28 |
-
<td></td>
|
| 29 |
</tr>
|
| 30 |
-
|
| 31 |
-
<td>Intel Extension for PyTorch</td>
|
| 32 |
-
<td></td>
|
| 33 |
-
<td>🚀</td>
|
| 34 |
<td>🚀</td>
|
| 35 |
<td>🚀</td>
|
| 36 |
-
<td></td>
|
| 37 |
-
</tr>
|
| 38 |
-
<tr>
|
| 39 |
-
<td>Intel Extension for Transformers</td>
|
| 40 |
-
<td></td>
|
| 41 |
<td>🚀</td>
|
| 42 |
<td>🚀</td>
|
| 43 |
<td>🚀</td>
|
| 44 |
-
<td></td>
|
| 45 |
</tr>
|
| 46 |
-
|
| 47 |
<td>OpenVINO</td>
|
| 48 |
<td></td>
|
| 49 |
<td>🚀</td>
|
|
@@ -52,53 +36,20 @@ helps you choose the best option for your specific use case. Happy building!
|
|
| 52 |
<td>🚀</td>
|
| 53 |
</tr>
|
| 54 |
<tr>
|
| 55 |
-
<td>
|
| 56 |
-
<td></td>
|
| 57 |
-
<td>🚀</td>
|
| 58 |
-
<td>🚀</td>
|
| 59 |
-
<td>🚀</td>
|
| 60 |
<td>🚀</td>
|
| 61 |
-
</tr>
|
| 62 |
-
<tr>
|
| 63 |
-
<td>NPU Acceleration Library</td>
|
| 64 |
-
<td></td>
|
| 65 |
-
<td></td>
|
| 66 |
-
<td></td>
|
| 67 |
-
<td></td>
|
| 68 |
<td>🚀</td>
|
| 69 |
-
</tr>
|
| 70 |
-
</tr>
|
| 71 |
-
<tr>
|
| 72 |
-
<td>PyTorch</td>
|
| 73 |
<td>🚀</td>
|
| 74 |
<td>🚀</td>
|
| 75 |
-
<td></td>
|
| 76 |
-
<td></td>
|
| 77 |
<td>🚀</td>
|
| 78 |
</tr>
|
| 79 |
-
</tr>
|
| 80 |
-
<tr>
|
| 81 |
-
<td>Tensorflow</td>
|
| 82 |
-
<td>🚀</td>
|
| 83 |
-
<td>🚀</td>
|
| 84 |
-
<td></td>
|
| 85 |
-
<td></td>
|
| 86 |
-
<td>🚀</td>
|
| 87 |
-
</tr>
|
| 88 |
</table>
|
| 89 |
</div>
|
| 90 |
|
| 91 |
<hr>
|
| 92 |
|
| 93 |
# Intel® Gaudi® Accelerators
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
Intel Gaudi Software supports PyTorch and DeepSpeed for accelerating LLM training and inference.
|
| 97 |
-
The Intel Gaudi Software graph compiler will optimize the execution of the operations accumulated in the graph
|
| 98 |
-
(e.g. operator fusion, data layout management, parallelization, pipelining and memory management,
|
| 99 |
-
and graph-level optimizations).
|
| 100 |
-
|
| 101 |
-
Optimum Habana provides covenient functionality for various tasks. Below is a command line snippet to run inference on Gaudi with meta-llama/Llama-2-7b-hf.
|
| 102 |
|
| 103 |
👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana)
|
| 104 |
|
|
@@ -118,40 +69,7 @@ python run_generation.py \
|
|
| 118 |
|
| 119 |
<hr>
|
| 120 |
|
| 121 |
-
# Intel® Max Series GPU
|
| 122 |
-
The Intel® Data Center GPU Max Series is Intel's highest performing, highest density, general-purpose discrete GPU, which packs over 100 billion transistors into one package and contains up to 128 Xe Cores--Intel's foundational GPU compute building block. You can learn more about this GPU [here](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html).
|
| 123 |
-
|
| 124 |
-
### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for Python
|
| 125 |
-
Intel® Extension for Transformers is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms, including Intel Gaudi2, Intel CPU, and Intel GPU.
|
| 126 |
-
|
| 127 |
-
👍 [Intel Extension for Transformers GitHub](https://github.com/intel/intel-extension-for-transformers)
|
| 128 |
-
|
| 129 |
-
Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.
|
| 130 |
-
|
| 131 |
-
👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch)
|
| 132 |
-
|
| 133 |
-
```python
|
| 134 |
-
import intel_extension_for_pytorch as ipex
|
| 135 |
-
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
| 136 |
-
from transformers import AutoTokenizer
|
| 137 |
-
|
| 138 |
-
device_map = "xpu"
|
| 139 |
-
model_name ="Qwen/Qwen-7B"
|
| 140 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 141 |
-
prompt = "When winter becomes spring, the flowers..."
|
| 142 |
-
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
|
| 143 |
-
|
| 144 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
| 145 |
-
device_map=device_map, load_in_4bit=True)
|
| 146 |
-
|
| 147 |
-
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)
|
| 148 |
-
|
| 149 |
-
output = model.generate(inputs)
|
| 150 |
-
```
|
| 151 |
-
<hr>
|
| 152 |
-
|
| 153 |
# Intel® Xeon® CPUs
|
| 154 |
-
The Intel® Xeon® CPUs have the most built-in accelerators of any CPU on the market, including Advanced Matrix Extensions (AMX) to accelerate matrix multiplication in deep learning training and inference. Learn more about the Xeon CPUs [here](https://www.intel.com/content/www/us/en/products/details/processors/xeon.html).
|
| 155 |
|
| 156 |
### Optimum Intel and Intel Extension for PyTorch (no quantization)
|
| 157 |
🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.
|
|
@@ -205,12 +123,53 @@ outputs = model.generate(inputs)
|
|
| 205 |
|
| 206 |
<hr>
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
# Intel® Core Ultra (NPUs and iGPUs)
|
| 209 |
-
Intel® Core™ Ultra Processors are optimized for premium thin and powerful laptops, featuring 3D performance hybrid architecture, advanced AI capabilities, and available with built-in Intel® Arc™ GPU. Learn more about Intel Core Ultra [here](https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html). For now, there is support for smaller models like [TinyLama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
|
| 210 |
|
| 211 |
-
###
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
|
|
|
| 214 |
👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library)
|
| 215 |
|
| 216 |
```python
|
|
@@ -244,25 +203,6 @@ print("Run inference")
|
|
| 244 |
_ = model.generate(**generation_kwargs)
|
| 245 |
```
|
| 246 |
|
| 247 |
-
### OpenVINO Tooling with Optimum Intel
|
| 248 |
-
OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference.
|
| 249 |
-
|
| 250 |
-
👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino)
|
| 251 |
-
|
| 252 |
-
```python
|
| 253 |
-
from optimum.intel import OVModelForCausalLM
|
| 254 |
-
from transformers import AutoTokenizer, pipeline
|
| 255 |
-
|
| 256 |
-
model_id = "helenai/gpt2-ov"
|
| 257 |
-
model = OVModelForCausalLM.from_pretrained(model_id)
|
| 258 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 259 |
-
|
| 260 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 261 |
-
|
| 262 |
-
pipe("In the spring, beautiful flowers bloom...")
|
| 263 |
-
|
| 264 |
-
```
|
| 265 |
-
|
| 266 |
<hr>
|
| 267 |
|
| 268 |
# Intel® Arc GPUs
|
|
|
|
| 19 |
<th>Arc GPU</th>
|
| 20 |
<th>Core Ultra</th>
|
| 21 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
</tr>
|
| 23 |
+
<td>PyTorch</td>
|
|
|
|
|
|
|
|
|
|
| 24 |
<td>🚀</td>
|
| 25 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
<td>🚀</td>
|
| 27 |
<td>🚀</td>
|
| 28 |
<td>🚀</td>
|
|
|
|
| 29 |
</tr>
|
| 30 |
+
<tr>
|
| 31 |
<td>OpenVINO</td>
|
| 32 |
<td></td>
|
| 33 |
<td>🚀</td>
|
|
|
|
| 36 |
<td>🚀</td>
|
| 37 |
</tr>
|
| 38 |
<tr>
|
| 39 |
+
<td>Hugging Face</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
<td>🚀</td>
|
| 43 |
<td>🚀</td>
|
|
|
|
|
|
|
| 44 |
<td>🚀</td>
|
| 45 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
</table>
|
| 47 |
</div>
|
| 48 |
|
| 49 |
<hr>
|
| 50 |
|
| 51 |
# Intel® Gaudi® Accelerators
|
| 52 |
+
Gaudi is Intel's most capable deep learning chip. You can learn about Gaudi [here](https://habana.ai/products/gaudi2/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana)
|
| 55 |
|
|
|
|
| 69 |
|
| 70 |
<hr>
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# Intel® Xeon® CPUs
|
|
|
|
| 73 |
|
| 74 |
### Optimum Intel and Intel Extension for PyTorch (no quantization)
|
| 75 |
🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.
|
|
|
|
| 123 |
|
| 124 |
<hr>
|
| 125 |
|
| 126 |
+
# Intel® Max Series GPU
|
| 127 |
+
|
| 128 |
+
### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for PyTorch
|
| 129 |
+
👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch)
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
import intel_extension_for_pytorch as ipex
|
| 133 |
+
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
| 134 |
+
from transformers import AutoTokenizer
|
| 135 |
+
|
| 136 |
+
device_map = "xpu"
|
| 137 |
+
model_name ="Qwen/Qwen-7B"
|
| 138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 139 |
+
prompt = "When winter becomes spring, the flowers..."
|
| 140 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
|
| 141 |
+
|
| 142 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
| 143 |
+
device_map=device_map, load_in_4bit=True)
|
| 144 |
+
|
| 145 |
+
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)
|
| 146 |
+
|
| 147 |
+
output = model.generate(inputs)
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
<hr>
|
| 151 |
+
|
| 152 |
# Intel® Core Ultra (NPUs and iGPUs)
|
|
|
|
| 153 |
|
| 154 |
+
### OpenVINO Tooling with Optimum Intel
|
| 155 |
+
|
| 156 |
+
👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino)
|
| 157 |
+
|
| 158 |
+
```python
|
| 159 |
+
from optimum.intel import OVModelForCausalLM
|
| 160 |
+
from transformers import AutoTokenizer, pipeline
|
| 161 |
+
|
| 162 |
+
model_id = "helenai/gpt2-ov"
|
| 163 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
| 164 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 165 |
+
|
| 166 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 167 |
+
|
| 168 |
+
pipe("In the spring, beautiful flowers bloom...")
|
| 169 |
+
|
| 170 |
+
```
|
| 171 |
|
| 172 |
+
### Intel® NPU Acceleration Library
|
| 173 |
👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library)
|
| 174 |
|
| 175 |
```python
|
|
|
|
| 203 |
_ = model.generate(**generation_kwargs)
|
| 204 |
```
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
<hr>
|
| 207 |
|
| 208 |
# Intel® Arc GPUs
|
info/programs.py
CHANGED
|
@@ -41,10 +41,4 @@ others in the community and within Intel
|
|
| 41 |
|
| 42 |
Learn more and apply through the program at https://www.intel.com/content/www/us/en/developer/community/innovators/oneapi-innovator.html
|
| 43 |
|
| 44 |
-
<hr>
|
| 45 |
-
|
| 46 |
-
## Intel DevHub Discord
|
| 47 |
-
|
| 48 |
-
Join 5000+ developers on the [Intel DevHub Discord](https://discord.gg/yNYNxK2k) to get support with your submission and talk about everything from GenAI, HPC, to Quantum Computing.
|
| 49 |
-
|
| 50 |
"""
|
|
|
|
| 41 |
|
| 42 |
Learn more and apply through the program at https://www.intel.com/content/www/us/en/developer/community/innovators/oneapi-innovator.html
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
"""
|