Spaces:
Running
Running
Benjamin Consolvo
commited on
Commit
Β·
f840dd9
1
Parent(s):
b518acf
first commit hf
Browse files- .gitignore +6 -0
- README.md +15 -8
- app.py +494 -0
- requirements.txt +13 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.streamlit/
|
| 2 |
+
.venv/
|
| 3 |
+
.pyton-version
|
| 4 |
+
auto_trade_log.json
|
| 5 |
+
uv.lock
|
| 6 |
+
pyproject.toml
|
README.md
CHANGED
|
@@ -1,14 +1,21 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description: Sample stock trading application
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Stock Trader
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.42.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: 'Sample stock trading application'
|
| 12 |
---
|
| 13 |
|
| 14 |
+
## Installation Steps
|
| 15 |
+
|
| 16 |
+
1. uv init
|
| 17 |
+
2. uv add -r requirements.txt
|
| 18 |
+
3. source .venv/bin/activate
|
| 19 |
+
4. streamlit run deeepseek_stocktrader.py
|
| 20 |
+
5. need to add streamlit secrets: .streamlit/secrets.toml
|
| 21 |
+
6. add .streamlit/ to .gitignore
|
app.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(layout="wide")
|
| 3 |
+
|
| 4 |
+
import yfinance as yf
|
| 5 |
+
# import alpaca as tradeapi
|
| 6 |
+
import alpaca_trade_api as alpaca
|
| 7 |
+
from newsapi import NewsApiClient
|
| 8 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
| 9 |
+
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
import logging
|
| 15 |
+
import threading
|
| 16 |
+
import time
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import plotly.graph_objs as go
|
| 20 |
+
from sklearn.preprocessing import minmax_scale
|
| 21 |
+
from plotly.subplots import make_subplots
|
| 22 |
+
|
| 23 |
+
# Configure logging
|
| 24 |
+
logging.basicConfig(level=logging.INFO)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
AUTO_TRADE_LOG_PATH = "auto_trade_log.json" # Path to store auto trade log
|
| 28 |
+
|
| 29 |
+
# The trading history events are saved in the file "auto_trade_log.json"
|
| 30 |
+
# This file is created and updated in the current working directory where you run your Streamlit app.
|
| 31 |
+
|
| 32 |
+
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
|
| 33 |
+
|
| 34 |
+
class AlpacaTrader:
|
| 35 |
+
def __init__(self, API_KEY, API_SECRET, BASE_URL):
|
| 36 |
+
self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
|
| 37 |
+
self.cash = 0
|
| 38 |
+
self.holdings = {}
|
| 39 |
+
self.trades = []
|
| 40 |
+
|
| 41 |
+
def get_market_status(self):
|
| 42 |
+
return self.alpaca.get_clock().is_open
|
| 43 |
+
|
| 44 |
+
def buy(self, symbol, qty):
|
| 45 |
+
try:
|
| 46 |
+
# Ensure at least $1000 in cash before buying
|
| 47 |
+
account = self.alpaca.get_account()
|
| 48 |
+
cash_balance = float(account.cash)
|
| 49 |
+
if cash_balance < 1000:
|
| 50 |
+
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
|
| 51 |
+
return None
|
| 52 |
+
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
|
| 53 |
+
logger.info(f"Bought {qty} shares of {symbol}")
|
| 54 |
+
return order
|
| 55 |
+
except Exception as e:
|
| 56 |
+
logger.error(f"Error buying {symbol}: {e}")
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
def sell(self, symbol, qty):
|
| 60 |
+
try:
|
| 61 |
+
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
|
| 62 |
+
logger.info(f"Sold {qty} shares of {symbol}")
|
| 63 |
+
return order
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.error(f"Error selling {symbol}: {e}")
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
def getHoldings(self):
|
| 69 |
+
positions = self.alpaca.list_positions()
|
| 70 |
+
for position in positions:
|
| 71 |
+
self.holdings[position.symbol] = position.market_value
|
| 72 |
+
return self.holdings
|
| 73 |
+
|
| 74 |
+
def getCash(self):
|
| 75 |
+
return self.alpaca.get_account().cash
|
| 76 |
+
|
| 77 |
+
def update_portfolio(self, symbol, price, qty, action):
|
| 78 |
+
if action == 'buy':
|
| 79 |
+
self.cash -= price * qty
|
| 80 |
+
if symbol in self.holdings:
|
| 81 |
+
self.holdings[symbol] += price * qty
|
| 82 |
+
else:
|
| 83 |
+
self.holdings[symbol] = price * qty
|
| 84 |
+
elif action == 'sell':
|
| 85 |
+
self.cash += price * qty
|
| 86 |
+
self.holdings[symbol] -= price * qty
|
| 87 |
+
if self.holdings[symbol] <= 0:
|
| 88 |
+
del self.holdings[symbol]
|
| 89 |
+
self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})
|
| 90 |
+
|
| 91 |
+
class NewsSentiment:
|
| 92 |
+
def __init__(self, API_KEY):
|
| 93 |
+
'''
|
| 94 |
+
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
|
| 95 |
+
'''
|
| 96 |
+
self.newsapi = NewsApiClient(api_key=API_KEY)
|
| 97 |
+
self.sia = SentimentIntensityAnalyzer()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def get_news_sentiment(self, symbols):
|
| 101 |
+
'''
|
| 102 |
+
ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
|
| 103 |
+
'''
|
| 104 |
+
sentiment = {}
|
| 105 |
+
for symbol in symbols:
|
| 106 |
+
try:
|
| 107 |
+
articles = self.newsapi.get_everything(q=symbol,
|
| 108 |
+
language='en',
|
| 109 |
+
sort_by='publishedAt', # <-- fixed argument name
|
| 110 |
+
page=1)
|
| 111 |
+
compound_score = 0
|
| 112 |
+
for article in articles['articles'][:5]: # Check first 5 articles
|
| 113 |
+
# print(f'article= {article}')
|
| 114 |
+
score = self.sia.polarity_scores(article['title'])['compound']
|
| 115 |
+
compound_score += score
|
| 116 |
+
avg_score = compound_score / 5 if articles['articles'] else 0
|
| 117 |
+
if avg_score > 0.1:
|
| 118 |
+
sentiment[symbol] = 'Positive'
|
| 119 |
+
elif avg_score < -0.1:
|
| 120 |
+
sentiment[symbol] = 'Negative'
|
| 121 |
+
else:
|
| 122 |
+
sentiment[symbol] = 'Neutral'
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error getting news for {symbol}: {e}")
|
| 125 |
+
sentiment[symbol] = 'Neutral'
|
| 126 |
+
return sentiment
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class StockAnalyzer:
|
| 132 |
+
def __init__(self, alpaca):
|
| 133 |
+
self.alpaca = alpaca
|
| 134 |
+
self.symbols = self.get_top_volume_stocks()
|
| 135 |
+
# Build a symbol->name mapping for use in plots/tables
|
| 136 |
+
self.symbol_to_name = self.get_symbol_to_name()
|
| 137 |
+
|
| 138 |
+
def get_symbol_to_name(self):
|
| 139 |
+
# Get mapping from symbol to company name using Alpaca asset info
|
| 140 |
+
assets = self.alpaca.alpaca.list_assets(status='active')
|
| 141 |
+
return {asset.symbol: asset.name for asset in assets}
|
| 142 |
+
|
| 143 |
+
def get_bars(self, alp_api, symbols, timeframe='1D'):
|
| 144 |
+
bars_data = {}
|
| 145 |
+
try:
|
| 146 |
+
bars = alp_api.get_bars(list(symbols), timeframe).df
|
| 147 |
+
for symbol in symbols:
|
| 148 |
+
symbol_bars = bars[bars['symbol'] == symbol]
|
| 149 |
+
if not symbol_bars.empty:
|
| 150 |
+
bar_info = symbol_bars.iloc[-1]
|
| 151 |
+
# Handle index type for timestamp
|
| 152 |
+
if isinstance(bar_info.name, tuple):
|
| 153 |
+
timestamp = bar_info.name[1].isoformat()
|
| 154 |
+
else:
|
| 155 |
+
timestamp = bar_info.name.isoformat()
|
| 156 |
+
bars_data[symbol] = {
|
| 157 |
+
'bar_data': {
|
| 158 |
+
'volume': bar_info['volume'],
|
| 159 |
+
'open': bar_info['open'],
|
| 160 |
+
'high': bar_info['high'],
|
| 161 |
+
'low': bar_info['low'],
|
| 162 |
+
'close': bar_info['close'],
|
| 163 |
+
'timestamp': timestamp
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
else:
|
| 167 |
+
logger.warning(f"No bar data for symbol: {symbol}")
|
| 168 |
+
bars_data[symbol] = {'bar_data': None}
|
| 169 |
+
except Exception as e:
|
| 170 |
+
logger.warning(f"Error fetching bars in batch: {e}")
|
| 171 |
+
for symbol in symbols:
|
| 172 |
+
bars_data[symbol] = {'bar_data': None}
|
| 173 |
+
return bars_data
|
| 174 |
+
|
| 175 |
+
def assetswithconditions(self,stock_assets):
|
| 176 |
+
cond = {
|
| 177 |
+
'class': ['us_equity'],
|
| 178 |
+
'exchange': ['NASDAQ', 'NYSE'],
|
| 179 |
+
'status': ['active'],
|
| 180 |
+
'tradable': [True],
|
| 181 |
+
'marginable': [True],
|
| 182 |
+
'shortable': [True],
|
| 183 |
+
'easy_to_borrow': [True],
|
| 184 |
+
'fractionable': [True]
|
| 185 |
+
}
|
| 186 |
+
assets_with_conditions = []
|
| 187 |
+
asset_symbol_dict = {}
|
| 188 |
+
|
| 189 |
+
for asset in stock_assets:
|
| 190 |
+
# Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
|
| 191 |
+
if '.' in asset.symbol or '/' in asset.symbol:
|
| 192 |
+
continue
|
| 193 |
+
|
| 194 |
+
if (asset.__getattr__('class') in cond['class'] and
|
| 195 |
+
asset.exchange in cond['exchange'] and
|
| 196 |
+
asset.status in cond['status'] and
|
| 197 |
+
asset.tradable in cond['tradable'] and
|
| 198 |
+
asset.marginable in cond['marginable'] and
|
| 199 |
+
asset.shortable in cond['shortable'] and
|
| 200 |
+
asset.easy_to_borrow in cond['easy_to_borrow'] and
|
| 201 |
+
asset.fractionable in cond['fractionable']
|
| 202 |
+
):
|
| 203 |
+
assets_with_conditions.append(asset)
|
| 204 |
+
|
| 205 |
+
asset_no_comma = asset.name.replace(',', '')
|
| 206 |
+
asset_first_word = asset_no_comma.split()[0]
|
| 207 |
+
|
| 208 |
+
asset_symbol_dict[asset.symbol] = asset._raw
|
| 209 |
+
asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
|
| 210 |
+
|
| 211 |
+
sorted_dict = dict(sorted(asset_symbol_dict.items()))
|
| 212 |
+
# print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
|
| 213 |
+
# print(f'assets_with_conditions = {assets_with_conditions}')
|
| 214 |
+
return assets_with_conditions, sorted_dict
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def get_top_volume_stocks(self,num_stocks=10):
|
| 218 |
+
try:
|
| 219 |
+
# Get all tradable assets
|
| 220 |
+
assets = self.alpaca.alpaca.list_assets(status='active')
|
| 221 |
+
# tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
|
| 222 |
+
# print(f'tradable_assets = {tradable_assets}')
|
| 223 |
+
|
| 224 |
+
assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
|
| 225 |
+
# print(f'sorted_dict = {sorted_dict}')
|
| 226 |
+
# Fetch bar data for all tradable assets
|
| 227 |
+
# print(f'sorted_dict.keys()={sorted_dict.keys()}')
|
| 228 |
+
tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')
|
| 229 |
+
|
| 230 |
+
# Extract volume and calculate the top 10 stocks by volume
|
| 231 |
+
volume_data = {
|
| 232 |
+
symbol: info['bar_data']['volume']
|
| 233 |
+
for symbol, info in tradable_assets.items()
|
| 234 |
+
if info['bar_data'] is not None
|
| 235 |
+
}
|
| 236 |
+
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
|
| 237 |
+
print(f'top_volume_stocks = {top_volume_stocks}')
|
| 238 |
+
|
| 239 |
+
return top_volume_stocks
|
| 240 |
+
except Exception as e:
|
| 241 |
+
logger.error(f"Error fetching top volume stocks: {e}")
|
| 242 |
+
return []
|
| 243 |
+
|
| 244 |
+
def get_historical_data(self, symbols):
|
| 245 |
+
data = {}
|
| 246 |
+
for symbol in symbols:
|
| 247 |
+
try:
|
| 248 |
+
# Pull historical data from 2000-01-01 to today, daily interval
|
| 249 |
+
ticker = yf.Ticker(symbol)
|
| 250 |
+
hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
|
| 251 |
+
data[symbol] = hist
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"Error getting data for {symbol}: {e}")
|
| 254 |
+
return data
|
| 255 |
+
|
| 256 |
+
class TradingApp:
|
| 257 |
+
def __init__(self):
|
| 258 |
+
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
|
| 259 |
+
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
|
| 260 |
+
self.analyzer = StockAnalyzer(self.alpaca)
|
| 261 |
+
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
|
| 262 |
+
self.auto_trade_log = [] # Store automatic trade actions
|
| 263 |
+
|
| 264 |
+
def display_charts(self):
|
| 265 |
+
# Create 12 individual dynamic price plots in a 4x3 grid using Plotly (3 columns, 4 rows)
|
| 266 |
+
symbols = list(self.data.keys())
|
| 267 |
+
symbol_to_name = self.analyzer.symbol_to_name
|
| 268 |
+
n = len(symbols)
|
| 269 |
+
cols = 3
|
| 270 |
+
rows = 4
|
| 271 |
+
subplot_titles = [
|
| 272 |
+
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
|
| 273 |
+
]
|
| 274 |
+
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
|
| 275 |
+
for idx, symbol in enumerate(symbols):
|
| 276 |
+
df = self.data[symbol]
|
| 277 |
+
if not df.empty:
|
| 278 |
+
row = idx // cols + 1
|
| 279 |
+
col = idx % cols + 1
|
| 280 |
+
fig.add_trace(
|
| 281 |
+
go.Scatter(
|
| 282 |
+
x=df.index,
|
| 283 |
+
y=df['Close'],
|
| 284 |
+
mode='lines',
|
| 285 |
+
name=symbol,
|
| 286 |
+
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
|
| 287 |
+
),
|
| 288 |
+
row=row,
|
| 289 |
+
col=col
|
| 290 |
+
)
|
| 291 |
+
fig.update_layout(
|
| 292 |
+
title="Top Volume Stocks - Price Charts (Since 2023)",
|
| 293 |
+
height=2000,
|
| 294 |
+
showlegend=False,
|
| 295 |
+
dragmode=False, # Disable global dragmode
|
| 296 |
+
)
|
| 297 |
+
# Enable scroll-zoom for each subplot (individual zoom)
|
| 298 |
+
fig.update_layout(
|
| 299 |
+
xaxis=dict(fixedrange=False),
|
| 300 |
+
yaxis=dict(fixedrange=False),
|
| 301 |
+
)
|
| 302 |
+
for i in range(1, rows * cols + 1):
|
| 303 |
+
fig.layout[f'xaxis{i}'].update(fixedrange=False)
|
| 304 |
+
fig.layout[f'yaxis{i}'].update(fixedrange=False)
|
| 305 |
+
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
|
| 306 |
+
|
| 307 |
+
def manual_trade(self):
|
| 308 |
+
# Move all user inputs to the sidebar
|
| 309 |
+
with st.sidebar:
|
| 310 |
+
st.header("Manual Trade")
|
| 311 |
+
symbol = st.text_input('Enter stock symbol')
|
| 312 |
+
qty = int(st.number_input('Enter quantity'))
|
| 313 |
+
action = st.selectbox('Action', ['Buy', 'Sell'])
|
| 314 |
+
if st.button('Execute'):
|
| 315 |
+
if action == 'Buy':
|
| 316 |
+
order = self.alpaca.buy(symbol, qty)
|
| 317 |
+
else:
|
| 318 |
+
order = self.alpaca.sell(symbol, qty)
|
| 319 |
+
if order:
|
| 320 |
+
st.success(f"Order executed: {action} {qty} shares of {symbol}")
|
| 321 |
+
else:
|
| 322 |
+
st.error("Order failed")
|
| 323 |
+
st.header("Portfolio")
|
| 324 |
+
st.write("Cash Balance:")
|
| 325 |
+
st.write(self.alpaca.getCash())
|
| 326 |
+
st.write("Holdings:")
|
| 327 |
+
st.write(self.alpaca.getHoldings())
|
| 328 |
+
st.write("Recent Trades:")
|
| 329 |
+
st.write(pd.DataFrame(self.alpaca.trades))
|
| 330 |
+
|
| 331 |
+
def auto_trade_based_on_sentiment(self, sentiment):
|
| 332 |
+
# Add company name to each action
|
| 333 |
+
actions = []
|
| 334 |
+
symbol_to_name = self.analyzer.symbol_to_name
|
| 335 |
+
for symbol, sentiment_value in sentiment.items():
|
| 336 |
+
action = None
|
| 337 |
+
if sentiment_value == 'Positive':
|
| 338 |
+
order = self.alpaca.buy(symbol, 1)
|
| 339 |
+
action = 'Buy'
|
| 340 |
+
elif sentiment_value == 'Negative':
|
| 341 |
+
order = self.alpaca.sell(symbol, 1)
|
| 342 |
+
action = 'Sell'
|
| 343 |
+
else:
|
| 344 |
+
order = None
|
| 345 |
+
action = 'Hold'
|
| 346 |
+
actions.append({
|
| 347 |
+
'symbol': symbol,
|
| 348 |
+
'company_name': symbol_to_name.get(symbol, ''),
|
| 349 |
+
'sentiment': sentiment_value,
|
| 350 |
+
'action': action
|
| 351 |
+
})
|
| 352 |
+
self.auto_trade_log = actions
|
| 353 |
+
return actions
|
| 354 |
+
|
| 355 |
+
def background_auto_trade(app):
|
| 356 |
+
# This function runs in a background thread and does not require a TTY.
|
| 357 |
+
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
|
| 358 |
+
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
|
| 359 |
+
# No code changes are needed for this warning.
|
| 360 |
+
while True:
|
| 361 |
+
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
|
| 362 |
+
actions = []
|
| 363 |
+
for symbol, sentiment_value in sentiment.items():
|
| 364 |
+
action = None
|
| 365 |
+
if sentiment_value == 'Positive':
|
| 366 |
+
order = app.alpaca.buy(symbol, 1)
|
| 367 |
+
action = 'Buy'
|
| 368 |
+
elif sentiment_value == 'Negative':
|
| 369 |
+
order = app.alpaca.sell(symbol, 1)
|
| 370 |
+
action = 'Sell'
|
| 371 |
+
else:
|
| 372 |
+
order = None
|
| 373 |
+
action = 'Hold'
|
| 374 |
+
actions.append({
|
| 375 |
+
'symbol': symbol,
|
| 376 |
+
'sentiment': sentiment_value,
|
| 377 |
+
'action': action
|
| 378 |
+
})
|
| 379 |
+
# Append to log file instead of overwriting
|
| 380 |
+
log_entry = {
|
| 381 |
+
"timestamp": datetime.now().isoformat(),
|
| 382 |
+
"actions": actions,
|
| 383 |
+
"sentiment": sentiment
|
| 384 |
+
}
|
| 385 |
+
try:
|
| 386 |
+
if os.path.exists(AUTO_TRADE_LOG_PATH):
|
| 387 |
+
with open(AUTO_TRADE_LOG_PATH, "r") as f:
|
| 388 |
+
log_data = json.load(f)
|
| 389 |
+
else:
|
| 390 |
+
log_data = []
|
| 391 |
+
except Exception:
|
| 392 |
+
log_data = []
|
| 393 |
+
log_data.append(log_entry)
|
| 394 |
+
with open(AUTO_TRADE_LOG_PATH, "w") as f:
|
| 395 |
+
json.dump(log_data, f)
|
| 396 |
+
time.sleep(AUTO_TRADE_INTERVAL)
|
| 397 |
+
|
| 398 |
+
def load_auto_trade_log():
|
| 399 |
+
try:
|
| 400 |
+
with open(AUTO_TRADE_LOG_PATH, "r") as f:
|
| 401 |
+
return json.load(f)
|
| 402 |
+
except Exception:
|
| 403 |
+
return None
|
| 404 |
+
|
| 405 |
+
def main():
|
| 406 |
+
st.title("Stock Trading Application")
|
| 407 |
+
|
| 408 |
+
if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
|
| 409 |
+
st.error("Please configure your API keys in secrets.toml")
|
| 410 |
+
return
|
| 411 |
+
|
| 412 |
+
app = TradingApp()
|
| 413 |
+
|
| 414 |
+
# Start background thread only once (on first run)
|
| 415 |
+
if "auto_trade_thread_started" not in st.session_state:
|
| 416 |
+
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
|
| 417 |
+
thread.start()
|
| 418 |
+
st.session_state["auto_trade_thread_started"] = True
|
| 419 |
+
|
| 420 |
+
if app.alpaca.get_market_status():
|
| 421 |
+
st.write("Market is open")
|
| 422 |
+
else:
|
| 423 |
+
st.write("Market is closed")
|
| 424 |
+
|
| 425 |
+
# User inputs and portfolio are now in the sidebar
|
| 426 |
+
app.manual_trade()
|
| 427 |
+
|
| 428 |
+
# Main area: plots and data
|
| 429 |
+
app.display_charts()
|
| 430 |
+
|
| 431 |
+
# Read and display latest auto-trade actions
|
| 432 |
+
st.write("Automatic Trading Actions Based on Sentiment (background):")
|
| 433 |
+
auto_trade_log = load_auto_trade_log()
|
| 434 |
+
if auto_trade_log:
|
| 435 |
+
# Show the most recent entry
|
| 436 |
+
last_entry = auto_trade_log[-1]
|
| 437 |
+
st.write(f"Last checked: {last_entry['timestamp']}")
|
| 438 |
+
df = pd.DataFrame(last_entry["actions"])
|
| 439 |
+
# Reorder columns for clarity
|
| 440 |
+
if "company_name" in df.columns:
|
| 441 |
+
df = df[["symbol", "company_name", "sentiment", "action"]]
|
| 442 |
+
st.dataframe(df)
|
| 443 |
+
st.write("Sentiment Analysis (latest):")
|
| 444 |
+
st.write(last_entry["sentiment"])
|
| 445 |
+
|
| 446 |
+
# Plot buy/sell actions over time (aggregate for all symbols)
|
| 447 |
+
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
|
| 448 |
+
history = []
|
| 449 |
+
for entry in auto_trade_log:
|
| 450 |
+
ts = entry["timestamp"]
|
| 451 |
+
for act in entry["actions"]:
|
| 452 |
+
if act["action"] in ("Buy", "Sell"):
|
| 453 |
+
history.append({
|
| 454 |
+
"timestamp": ts,
|
| 455 |
+
"symbol": act["symbol"],
|
| 456 |
+
"action": act["action"]
|
| 457 |
+
})
|
| 458 |
+
if history:
|
| 459 |
+
hist_df = pd.DataFrame(history)
|
| 460 |
+
if not hist_df.empty:
|
| 461 |
+
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
|
| 462 |
+
# Pivot to get Buy/Sell counts per symbol over time
|
| 463 |
+
# Avoid FutureWarning by explicitly converting to float after replace
|
| 464 |
+
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1})
|
| 465 |
+
hist_df["action_value"] = hist_df["action_value"].astype(float)
|
| 466 |
+
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
|
| 467 |
+
st.line_chart(pivot.fillna(0))
|
| 468 |
+
else:
|
| 469 |
+
st.info("Waiting for first background auto-trade run...")
|
| 470 |
+
|
| 471 |
+
# Explanation:
|
| 472 |
+
# In Alpaca:
|
| 473 |
+
# - 'cash' is the actual cash available in your account (uninvested funds).
|
| 474 |
+
# - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled.
|
| 475 |
+
# For a cash account, buying_power == cash.
|
| 476 |
+
# For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status.
|
| 477 |
+
|
| 478 |
+
# Example usage:
|
| 479 |
+
# account = alpaca.get_account()
|
| 480 |
+
# cash_balance = account.cash
|
| 481 |
+
# buying_power = account.buying_power
|
| 482 |
+
|
| 483 |
+
# Note:
|
| 484 |
+
# To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin".
|
| 485 |
+
# This cannot be changed via the API or code. You must:
|
| 486 |
+
# 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/
|
| 487 |
+
# 2. Go to "Paper Trading" > "Settings"
|
| 488 |
+
# 3. Set the account type to "Cash" (not "Margin")
|
| 489 |
+
# 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support.
|
| 490 |
+
|
| 491 |
+
# There is no programmatic/API way to change the margin setting for a paper account.
|
| 492 |
+
|
| 493 |
+
if __name__ == "__main__":
|
| 494 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
alpaca-py
|
| 2 |
+
yfinance
|
| 3 |
+
streamlit
|
| 4 |
+
alpaca-trade-api
|
| 5 |
+
alpha_vantage==2.3.1
|
| 6 |
+
lxml
|
| 7 |
+
newsapi-python
|
| 8 |
+
vaderSentiment
|
| 9 |
+
streamlit
|
| 10 |
+
pandas
|
| 11 |
+
matplotlib
|
| 12 |
+
plotly
|
| 13 |
+
sklearn
|