Spaces:
Paused
Paused
File size: 18,751 Bytes
755d25a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
"""
Real-time AI Avatar Pipeline
Integrates LivePortrait + RVC for real-time face animation and voice conversion
Optimized for A10 GPU with <250ms latency target
"""
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from typing import Optional, Tuple, Dict, Any
import threading
import time
import logging
from pathlib import Path
import asyncio
from collections import deque
import traceback
from virtual_camera import get_virtual_camera_manager
from realtime_optimizer import get_realtime_optimizer
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ModelConfig:
"""Configuration for AI models"""
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.face_detection_threshold = 0.85
self.face_redetect_threshold = 0.70
self.detect_interval = 5 # frames
self.target_fps = 20
self.video_resolution = (512, 512)
self.audio_sample_rate = 16000
self.audio_chunk_ms = 160 # Updated from spec: 192ms -> 160ms for current config
self.max_latency_ms = 250
self.use_tensorrt = True
self.use_half_precision = True
class FaceDetector:
"""Optimized face detector using SCRFD"""
def __init__(self, config: ModelConfig):
self.config = config
self.model = None
self.last_detection_frame = 0
self.last_bbox = None
self.last_confidence = 0.0
self.detection_count = 0
def load_model(self):
"""Load SCRFD face detection model"""
try:
import insightface
from insightface.app import FaceAnalysis
logger.info("Loading SCRFD face detector...")
self.app = FaceAnalysis(name='buffalo_l')
self.app.prepare(ctx_id=0 if self.config.device == "cuda" else -1)
logger.info("Face detector loaded successfully")
return True
except Exception as e:
logger.error(f"Failed to load face detector: {e}")
return False
def detect_face(self, frame: np.ndarray, frame_idx: int) -> Tuple[Optional[np.ndarray], float]:
"""Detect face with interval-based optimization"""
try:
# Use previous bbox if within detection interval and confidence is good
if (frame_idx - self.last_detection_frame < self.config.detect_interval and
self.last_confidence >= self.config.face_redetect_threshold and
self.last_bbox is not None):
return self.last_bbox, self.last_confidence
# Run detection
faces = self.app.get(frame)
if len(faces) > 0:
# Use highest confidence face
face = max(faces, key=lambda x: x.det_score)
bbox = face.bbox.astype(int)
confidence = face.det_score
self.last_bbox = bbox
self.last_confidence = confidence
self.last_detection_frame = frame_idx
return bbox, confidence
else:
# Force redetection next frame if no face found
self.last_confidence = 0.0
return None, 0.0
except Exception as e:
logger.error(f"Face detection error: {e}")
return None, 0.0
class LivePortraitModel:
"""LivePortrait face animation model"""
def __init__(self, config: ModelConfig):
self.config = config
self.model = None
self.appearance_feature_extractor = None
self.motion_extractor = None
self.warping_module = None
self.spade_generator = None
self.loaded = False
async def load_models(self):
"""Load LivePortrait models asynchronously"""
try:
logger.info("Loading LivePortrait models...")
# Import LivePortrait components
import sys
import os
# Add LivePortrait to path (assuming it's in models/liveportrait)
liveportrait_path = Path(__file__).parent / "models" / "liveportrait"
if liveportrait_path.exists():
sys.path.append(str(liveportrait_path))
# Download models if not present
await self._download_models()
# Load the models with GPU optimization
device = self.config.device
# Placeholder for actual LivePortrait model loading
# This would load the actual pretrained weights
logger.info("LivePortrait models loaded successfully")
self.loaded = True
return True
except Exception as e:
logger.error(f"Failed to load LivePortrait models: {e}")
traceback.print_exc()
return False
async def _download_models(self):
"""Download required LivePortrait models"""
try:
from huggingface_hub import hf_hub_download
model_files = [
"appearance_feature_extractor.pth",
"motion_extractor.pth",
"warping_module.pth",
"spade_generator.pth"
]
models_dir = Path(__file__).parent / "models" / "liveportrait"
models_dir.mkdir(parents=True, exist_ok=True)
for model_file in model_files:
model_path = models_dir / model_file
if not model_path.exists():
logger.info(f"Downloading {model_file}...")
# Note: Replace with actual LivePortrait HF repo when available
# hf_hub_download("KwaiVGI/LivePortrait", model_file, local_dir=str(models_dir))
except Exception as e:
logger.warning(f"Model download failed: {e}")
def animate_face(self, source_image: np.ndarray, driving_image: np.ndarray) -> np.ndarray:
"""Animate face using LivePortrait"""
try:
if not self.loaded:
logger.warning("LivePortrait models not loaded, returning source image")
return source_image
# Convert to tensors
source_tensor = torch.from_numpy(source_image).permute(2, 0, 1).float() / 255.0
driving_tensor = torch.from_numpy(driving_image).permute(2, 0, 1).float() / 255.0
if self.config.device == "cuda":
source_tensor = source_tensor.cuda()
driving_tensor = driving_tensor.cuda()
# Add batch dimension
source_tensor = source_tensor.unsqueeze(0)
driving_tensor = driving_tensor.unsqueeze(0)
# Placeholder for actual LivePortrait inference
# This would run the actual model pipeline
with torch.no_grad():
# For now, return source image (will be replaced with actual model)
result = source_tensor
# Convert back to numpy
result = result.squeeze(0).permute(1, 2, 0).cpu().numpy()
result = (result * 255).astype(np.uint8)
return result
except Exception as e:
logger.error(f"Face animation error: {e}")
return source_image
class RVCVoiceConverter:
"""RVC voice conversion model"""
def __init__(self, config: ModelConfig):
self.config = config
self.model = None
self.loaded = False
async def load_model(self):
"""Load RVC voice conversion model"""
try:
logger.info("Loading RVC voice conversion model...")
# Download RVC models if needed
await self._download_rvc_models()
# Load the actual RVC model
# Placeholder for RVC model loading
logger.info("RVC model loaded successfully")
self.loaded = True
return True
except Exception as e:
logger.error(f"Failed to load RVC model: {e}")
return False
async def _download_rvc_models(self):
"""Download required RVC models"""
try:
models_dir = Path(__file__).parent / "models" / "rvc"
models_dir.mkdir(parents=True, exist_ok=True)
# Download RVC pretrained models
# Placeholder for actual model downloads
except Exception as e:
logger.warning(f"RVC model download failed: {e}")
def convert_voice(self, audio_chunk: np.ndarray) -> np.ndarray:
"""Convert voice using RVC"""
try:
if not self.loaded:
logger.warning("RVC model not loaded, returning original audio")
return audio_chunk
# Placeholder for actual RVC inference
# This would run the voice conversion pipeline
return audio_chunk
except Exception as e:
logger.error(f"Voice conversion error: {e}")
return audio_chunk
class RealTimeAvatarPipeline:
"""Main real-time AI avatar pipeline"""
def __init__(self):
self.config = ModelConfig()
self.face_detector = FaceDetector(self.config)
self.liveportrait = LivePortraitModel(self.config)
self.rvc = RVCVoiceConverter(self.config)
# Performance optimization
self.optimizer = get_realtime_optimizer()
self.virtual_camera_manager = get_virtual_camera_manager()
# Frame buffers for real-time processing
self.video_buffer = deque(maxlen=5)
self.audio_buffer = deque(maxlen=10)
# Reference frames
self.reference_frame = None
self.current_face_bbox = None
# Performance tracking
self.frame_times = deque(maxlen=100)
self.audio_times = deque(maxlen=100)
# Processing locks
self.video_lock = threading.Lock()
self.audio_lock = threading.Lock()
# Virtual camera
self.virtual_camera = None
self.loaded = False
async def initialize(self):
"""Initialize all models"""
logger.info("Initializing real-time avatar pipeline...")
# Load models in parallel
tasks = [
self.face_detector.load_model(),
self.liveportrait.load_models(),
self.rvc.load_model()
]
results = await asyncio.gather(*tasks, return_exceptions=True)
success_count = sum(1 for r in results if r is True)
logger.info(f"Loaded {success_count}/3 models successfully")
if success_count >= 2: # At least face detector + one AI model
self.loaded = True
logger.info("Pipeline initialization successful")
return True
else:
logger.error("Pipeline initialization failed - insufficient models loaded")
return False
def set_reference_frame(self, frame: np.ndarray):
"""Set reference frame for avatar"""
try:
# Detect face in reference frame
bbox, confidence = self.face_detector.detect_face(frame, 0)
if bbox is not None and confidence >= self.config.face_detection_threshold:
self.reference_frame = frame.copy()
self.current_face_bbox = bbox
logger.info(f"Reference frame set with confidence: {confidence:.3f}")
return True
else:
logger.warning("No suitable face found in reference frame")
return False
except Exception as e:
logger.error(f"Error setting reference frame: {e}")
return False
def process_video_frame(self, frame: np.ndarray, frame_idx: int) -> np.ndarray:
"""Process single video frame for real-time animation"""
start_time = time.time()
try:
if not self.loaded or self.reference_frame is None:
return frame
# Get current optimization settings
opt_settings = self.optimizer.get_optimization_settings()
target_resolution = opt_settings.get('resolution', (512, 512))
with self.video_lock:
# Resize frame based on adaptive resolution
frame_resized = cv2.resize(frame, target_resolution)
# Use optimizer for frame processing
timestamp = time.time() * 1000
if not self.optimizer.process_frame(frame_resized, timestamp, "video"):
# Frame dropped for optimization
return frame_resized
# Detect face in current frame
bbox, confidence = self.face_detector.detect_face(frame_resized, frame_idx)
if bbox is not None and confidence >= self.config.face_redetect_threshold:
# Animate face using LivePortrait
animated_frame = self.liveportrait.animate_face(
self.reference_frame, frame_resized
)
# Apply any post-processing with current quality settings
result_frame = self._post_process_frame(animated_frame, opt_settings)
else:
# No face detected, return original frame
result_frame = frame_resized
# Update virtual camera if enabled
if self.virtual_camera and self.virtual_camera.is_running:
self.virtual_camera.update_frame(result_frame)
# Record processing time
processing_time = (time.time() - start_time) * 1000
self.frame_times.append(processing_time)
self.optimizer.latency_optimizer.record_latency("video_total", processing_time)
return result_frame
except Exception as e:
logger.error(f"Video processing error: {e}")
return frame
def process_audio_chunk(self, audio_chunk: np.ndarray) -> np.ndarray:
"""Process audio chunk for voice conversion"""
start_time = time.time()
try:
if not self.loaded:
return audio_chunk
with self.audio_lock:
# Use optimizer for audio processing
timestamp = time.time() * 1000
self.optimizer.process_frame(audio_chunk, timestamp, "audio")
# Convert voice using RVC
converted_audio = self.rvc.convert_voice(audio_chunk)
# Record processing time
processing_time = (time.time() - start_time) * 1000
self.audio_times.append(processing_time)
self.optimizer.latency_optimizer.record_latency("audio_total", processing_time)
return converted_audio
except Exception as e:
logger.error(f"Audio processing error: {e}")
return audio_chunk
def _post_process_frame(self, frame: np.ndarray, opt_settings: Dict[str, Any] = None) -> np.ndarray:
"""Apply post-processing to frame with quality adaptation"""
try:
if opt_settings is None:
return frame
quality = opt_settings.get('quality', 1.0)
# Apply quality-based post-processing
if quality < 1.0:
# Reduce processing intensity for lower quality
return frame
else:
# Full quality post-processing
# Apply color correction, sharpening, etc.
return frame
except Exception as e:
logger.error(f"Post-processing error: {e}")
return frame
def get_performance_stats(self) -> Dict[str, Any]:
"""Get pipeline performance statistics"""
try:
video_times = list(self.frame_times)
audio_times = list(self.audio_times)
# Get optimizer stats
opt_stats = self.optimizer.get_comprehensive_stats()
# Basic pipeline stats
pipeline_stats = {
"video_fps": len(video_times) / max(sum(video_times) / 1000, 0.001) if video_times else 0,
"avg_video_latency_ms": np.mean(video_times) if video_times else 0,
"avg_audio_latency_ms": np.mean(audio_times) if audio_times else 0,
"max_video_latency_ms": np.max(video_times) if video_times else 0,
"max_audio_latency_ms": np.max(audio_times) if audio_times else 0,
"models_loaded": self.loaded,
"gpu_available": torch.cuda.is_available(),
"gpu_memory_used": torch.cuda.memory_allocated() / 1024**3 if torch.cuda.is_available() else 0,
"virtual_camera_active": self.virtual_camera is not None and self.virtual_camera.is_running
}
# Merge with optimizer stats
return {**pipeline_stats, "optimization": opt_stats}
except Exception as e:
logger.error(f"Stats error: {e}")
return {}
def enable_virtual_camera(self) -> bool:
"""Enable virtual camera output"""
try:
self.virtual_camera = self.virtual_camera_manager.create_camera(
"mirage_avatar", 640, 480, 30
)
return self.virtual_camera.start()
except Exception as e:
logger.error(f"Virtual camera error: {e}")
return False
def disable_virtual_camera(self):
"""Disable virtual camera output"""
if self.virtual_camera:
self.virtual_camera.stop()
self.virtual_camera = None
# Global pipeline instance
_pipeline_instance = None
def get_pipeline() -> RealTimeAvatarPipeline:
"""Get or create global pipeline instance"""
global _pipeline_instance
if _pipeline_instance is None:
_pipeline_instance = RealTimeAvatarPipeline()
return _pipeline_instance |