File size: 14,451 Bytes
755d25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""
Real-time Optimization Module
Implements latency reduction, frame buffering, and GPU optimization
"""
import torch
import torch.nn.functional as F
import numpy as np
import time
import threading
import queue
import logging
from collections import deque
from typing import Dict, Any, Optional, Tuple
import psutil
import gc

logger = logging.getLogger(__name__)

class LatencyOptimizer:
    """Optimizes processing pipeline for minimal latency"""
    
    def __init__(self, target_latency_ms: float = 250.0):
        self.target_latency_ms = target_latency_ms
        self.latency_history = deque(maxlen=100)
        self.processing_times = {}
        
        # Adaptive parameters
        self.current_quality = 1.0  # 0.5 to 1.0
        self.current_resolution = (512, 512)
        self.current_fps = 20
        
        # Performance thresholds
        self.latency_threshold_high = target_latency_ms * 0.8  # 200ms
        self.latency_threshold_low = target_latency_ms * 0.6   # 150ms
        
        # Adaptation counters
        self.high_latency_count = 0
        self.low_latency_count = 0
        self.adaptation_threshold = 5  # consecutive frames
        
    def record_latency(self, stage: str, latency_ms: float):
        """Record latency for a processing stage"""
        self.processing_times[stage] = latency_ms
        
        # Calculate total latency
        total_latency = sum(self.processing_times.values())
        self.latency_history.append(total_latency)
        
        # Trigger adaptation if needed
        self._adapt_quality(total_latency)
    
    def _adapt_quality(self, total_latency: float):
        """Adapt quality based on latency"""
        if total_latency > self.latency_threshold_high:
            self.high_latency_count += 1
            self.low_latency_count = 0
            
            if self.high_latency_count >= self.adaptation_threshold:
                self._degrade_quality()
                self.high_latency_count = 0
                
        elif total_latency < self.latency_threshold_low:
            self.low_latency_count += 1
            self.high_latency_count = 0
            
            if self.low_latency_count >= self.adaptation_threshold * 2:  # Be more conservative with upgrades
                self._improve_quality()
                self.low_latency_count = 0
        else:
            self.high_latency_count = 0
            self.low_latency_count = 0
    
    def _degrade_quality(self):
        """Degrade quality to improve latency"""
        if self.current_quality > 0.7:
            self.current_quality -= 0.1
            logger.info(f"Reduced quality to {self.current_quality:.1f}")
        elif self.current_fps > 15:
            self.current_fps -= 2
            logger.info(f"Reduced FPS to {self.current_fps}")
        elif self.current_resolution[0] > 384:
            self.current_resolution = (384, 384)
            logger.info(f"Reduced resolution to {self.current_resolution}")
    
    def _improve_quality(self):
        """Improve quality when latency allows"""
        if self.current_resolution[0] < 512:
            self.current_resolution = (512, 512)
            logger.info(f"Increased resolution to {self.current_resolution}")
        elif self.current_fps < 20:
            self.current_fps += 2
            logger.info(f"Increased FPS to {self.current_fps}")
        elif self.current_quality < 1.0:
            self.current_quality += 0.1
            logger.info(f"Increased quality to {self.current_quality:.1f}")
    
    def get_current_settings(self) -> Dict[str, Any]:
        """Get current adaptive settings"""
        return {
            "quality": self.current_quality,
            "resolution": self.current_resolution,
            "fps": self.current_fps,
            "avg_latency_ms": np.mean(self.latency_history) if self.latency_history else 0
        }

class FrameBuffer:
    """Thread-safe frame buffer with overflow protection"""
    
    def __init__(self, max_size: int = 5):
        self.max_size = max_size
        self.buffer = queue.Queue(maxsize=max_size)
        self.dropped_frames = 0
        self.total_frames = 0
        
    def put_frame(self, frame: np.ndarray, timestamp: float) -> bool:
        """Add frame to buffer, returns False if dropped"""
        self.total_frames += 1
        
        try:
            self.buffer.put_nowait((frame, timestamp))
            return True
        except queue.Full:
            # Drop oldest frame and add new one
            try:
                self.buffer.get_nowait()
                self.buffer.put_nowait((frame, timestamp))
                self.dropped_frames += 1
                return True
            except queue.Empty:
                return False
    
    def get_frame(self) -> Optional[Tuple[np.ndarray, float]]:
        """Get next frame from buffer"""
        try:
            return self.buffer.get_nowait()
        except queue.Empty:
            return None
    
    def get_stats(self) -> Dict[str, int]:
        """Get buffer statistics"""
        return {
            "size": self.buffer.qsize(),
            "max_size": self.max_size,
            "dropped_frames": self.dropped_frames,
            "total_frames": self.total_frames,
            "drop_rate": self.dropped_frames / max(self.total_frames, 1)
        }

class GPUMemoryManager:
    """Manages GPU memory for optimal performance"""
    
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.memory_threshold = 0.9  # 90% of GPU memory
        self.cleanup_interval = 50  # frames
        self.frame_count = 0
        
    def optimize_memory(self):
        """Optimize GPU memory usage"""
        if not torch.cuda.is_available():
            return
        
        self.frame_count += 1
        
        # Periodic cleanup
        if self.frame_count % self.cleanup_interval == 0:
            self._cleanup_memory()
        
        # Emergency cleanup if memory usage is high
        if self._get_memory_usage() > self.memory_threshold:
            self._emergency_cleanup()
    
    def _get_memory_usage(self) -> float:
        """Get current GPU memory usage ratio"""
        if not torch.cuda.is_available():
            return 0.0
        
        allocated = torch.cuda.memory_allocated()
        total = torch.cuda.get_device_properties(0).total_memory
        return allocated / total
    
    def _cleanup_memory(self):
        """Perform memory cleanup"""
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
    
    def _emergency_cleanup(self):
        """Emergency memory cleanup"""
        logger.warning("High GPU memory usage, performing emergency cleanup")
        self._cleanup_memory()
        
        # Force garbage collection
        for _ in range(3):
            gc.collect()
    
    def get_memory_stats(self) -> Dict[str, float]:
        """Get GPU memory statistics"""
        if not torch.cuda.is_available():
            return {"available": False}
        
        allocated = torch.cuda.memory_allocated()
        reserved = torch.cuda.memory_reserved()
        total = torch.cuda.get_device_properties(0).total_memory
        
        return {
            "available": True,
            "allocated_gb": allocated / (1024**3),
            "reserved_gb": reserved / (1024**3),
            "total_gb": total / (1024**3),
            "usage_ratio": allocated / total
        }

class AudioSyncManager:
    """Manages audio-video synchronization"""
    
    def __init__(self, max_drift_ms: float = 150.0):
        self.max_drift_ms = max_drift_ms
        self.audio_timestamps = deque(maxlen=100)
        self.video_timestamps = deque(maxlen=100)
        self.sync_offset = 0.0
        
    def add_audio_timestamp(self, timestamp: float):
        """Add audio timestamp"""
        self.audio_timestamps.append(timestamp)
        self._calculate_sync_offset()
    
    def add_video_timestamp(self, timestamp: float):
        """Add video timestamp"""
        self.video_timestamps.append(timestamp)
        self._calculate_sync_offset()
    
    def _calculate_sync_offset(self):
        """Calculate current sync offset"""
        if len(self.audio_timestamps) == 0 or len(self.video_timestamps) == 0:
            return
        
        # Calculate average timestamp difference
        audio_avg = np.mean(list(self.audio_timestamps)[-10:])  # Last 10 samples
        video_avg = np.mean(list(self.video_timestamps)[-10:])
        
        self.sync_offset = audio_avg - video_avg
    
    def should_drop_video_frame(self, video_timestamp: float) -> bool:
        """Check if video frame should be dropped for sync"""
        if len(self.audio_timestamps) == 0:
            return False
        
        latest_audio = self.audio_timestamps[-1]
        drift = video_timestamp - latest_audio
        
        return abs(drift) > self.max_drift_ms
    
    def get_sync_stats(self) -> Dict[str, float]:
        """Get synchronization statistics"""
        return {
            "sync_offset_ms": self.sync_offset,
            "audio_samples": len(self.audio_timestamps),
            "video_samples": len(self.video_timestamps)
        }

class PerformanceProfiler:
    """Profiles system performance for optimization"""
    
    def __init__(self):
        self.cpu_usage = deque(maxlen=60)  # 1 minute at 1 Hz
        self.memory_usage = deque(maxlen=60)
        self.gpu_utilization = deque(maxlen=60)
        
        # Start monitoring thread
        self.monitoring = True
        self.monitor_thread = threading.Thread(target=self._monitor_system)
        self.monitor_thread.daemon = True
        self.monitor_thread.start()
    
    def _monitor_system(self):
        """Monitor system resources"""
        while self.monitoring:
            try:
                # CPU usage
                cpu_percent = psutil.cpu_percent(interval=1)
                self.cpu_usage.append(cpu_percent)
                
                # Memory usage
                memory = psutil.virtual_memory()
                self.memory_usage.append(memory.percent)
                
                # GPU utilization (if available)
                if torch.cuda.is_available():
                    # Approximate GPU utilization based on memory usage
                    gpu_memory_used = torch.cuda.memory_allocated() / torch.cuda.get_device_properties(0).total_memory
                    self.gpu_utilization.append(gpu_memory_used * 100)
                else:
                    self.gpu_utilization.append(0)
                    
            except Exception as e:
                logger.error(f"System monitoring error: {e}")
            
            time.sleep(1)
    
    def stop_monitoring(self):
        """Stop system monitoring"""
        self.monitoring = False
        if self.monitor_thread.is_alive():
            self.monitor_thread.join()
    
    def get_system_stats(self) -> Dict[str, Any]:
        """Get system performance statistics"""
        return {
            "cpu_usage_avg": np.mean(self.cpu_usage) if self.cpu_usage else 0,
            "cpu_usage_max": np.max(self.cpu_usage) if self.cpu_usage else 0,
            "memory_usage_avg": np.mean(self.memory_usage) if self.memory_usage else 0,
            "memory_usage_max": np.max(self.memory_usage) if self.memory_usage else 0,
            "gpu_utilization_avg": np.mean(self.gpu_utilization) if self.gpu_utilization else 0,
            "gpu_utilization_max": np.max(self.gpu_utilization) if self.gpu_utilization else 0
        }

class RealTimeOptimizer:
    """Main real-time optimization controller"""
    
    def __init__(self, target_latency_ms: float = 250.0):
        self.latency_optimizer = LatencyOptimizer(target_latency_ms)
        self.frame_buffer = FrameBuffer()
        self.gpu_manager = GPUMemoryManager()
        self.audio_sync = AudioSyncManager()
        self.profiler = PerformanceProfiler()
        
        self.stats = {}
        self.last_stats_update = time.time()
    
    def process_frame(self, frame: np.ndarray, timestamp: float, stage: str = "video") -> bool:
        """Process a frame with optimization"""
        start_time = time.time()
        
        # Check if frame should be dropped for sync
        if stage == "video" and self.audio_sync.should_drop_video_frame(timestamp):
            return False
        
        # Add to buffer
        success = self.frame_buffer.put_frame(frame, timestamp)
        
        # Record processing time
        processing_time = (time.time() - start_time) * 1000
        self.latency_optimizer.record_latency(stage, processing_time)
        
        # Update timestamps for sync
        if stage == "video":
            self.audio_sync.add_video_timestamp(timestamp)
        elif stage == "audio":
            self.audio_sync.add_audio_timestamp(timestamp)
        
        # Optimize GPU memory
        self.gpu_manager.optimize_memory()
        
        return success
    
    def get_frame(self) -> Optional[Tuple[np.ndarray, float]]:
        """Get next frame from buffer"""
        return self.frame_buffer.get_frame()
    
    def get_optimization_settings(self) -> Dict[str, Any]:
        """Get current optimization settings"""
        return self.latency_optimizer.get_current_settings()
    
    def get_comprehensive_stats(self) -> Dict[str, Any]:
        """Get comprehensive performance statistics"""
        now = time.time()
        
        # Update stats every 2 seconds
        if now - self.last_stats_update > 2.0:
            self.stats = {
                "latency": self.latency_optimizer.get_current_settings(),
                "buffer": self.frame_buffer.get_stats(),
                "gpu": self.gpu_manager.get_memory_stats(),
                "sync": self.audio_sync.get_sync_stats(),
                "system": self.profiler.get_system_stats()
            }
            self.last_stats_update = now
        
        return self.stats
    
    def cleanup(self):
        """Cleanup optimizer resources"""
        self.profiler.stop_monitoring()

# Global optimizer instance
_optimizer_instance = None

def get_realtime_optimizer() -> RealTimeOptimizer:
    """Get or create global optimizer instance"""
    global _optimizer_instance
    if _optimizer_instance is None:
        _optimizer_instance = RealTimeOptimizer()
    return _optimizer_instance