Spaces:
Paused
Paused
File size: 34,279 Bytes
ba8225a d87a575 ba8225a bd747bf ba8225a 71d0804 ba8225a d6cb224 ba8225a b9fe001 ba8225a 8caf3b0 5d8fdc1 4eab203 5d8fdc1 ba8225a b9fe001 ba8225a be08742 f8528a1 5d8fdc1 ee8b5b5 fc6d640 ee8b5b5 fc6d640 4eab203 ce1c945 4eab203 ce1c945 4eab203 ce1c945 4eab203 ce1c945 4eab203 ce1c945 4eab203 ba8225a b415bba bd747bf ba8225a b96043e ba8225a 71d0804 b91919c ba8225a b9fe001 b415bba b9fe001 d87a575 b9fe001 23a52ba b9fe001 dc47447 b9fe001 dc47447 23a52ba b9fe001 dc47447 23a52ba ba8225a b9fe001 c14bfd3 b9fe001 ba8225a b9fe001 ba8225a b9fe001 ba8225a 23a52ba b9fe001 ba8225a d6cb224 ba8225a 9457f1e dc47447 8caf3b0 dc47447 8caf3b0 dc47447 ba8225a 5d8fdc1 9457f1e b9fe001 4eab203 9457f1e 4eab203 9457f1e 4eab203 ba8225a 4eab203 ba8225a 5d8fdc1 ba8225a 5d8fdc1 b91919c 9457f1e b91919c 4eab203 ba8225a 4eab203 8caf3b0 9457f1e b96043e 5d8fdc1 b96043e 5d8fdc1 b96043e dc47447 b9fe001 ba8225a b9fe001 ba8225a b9fe001 ba8225a b9fe001 9457f1e ce1c945 ba8225a b9fe001 b415bba ba8225a b9fe001 8caf3b0 b96043e 9457f1e b91919c 23a52ba ba8225a b415bba b96043e b415bba ba8225a dc47447 ba8225a 4eab203 d3a9acd 4eab203 ba8225a 4eab203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import os
import io
import time
import logging
import sys
from typing import Optional, Dict, Any, List
import numpy as np
import cv2
from PIL import Image
try:
# Defer heavy imports; may fail if onnxruntime/torch missing
import insightface # type: ignore
from insightface.app import FaceAnalysis # type: ignore
except Exception:
insightface = None # type: ignore
FaceAnalysis = None # type: ignore
logger = logging.getLogger(__name__)
INSWAPPER_ONNX_PATH = os.path.join('models', 'inswapper', 'inswapper_128_fp16.onnx')
ALT_INSWAPPER_PATH = os.path.join('models', 'inswapper', 'inswapper_128.onnx')
CODEFORMER_PATH = os.path.join('models', 'codeformer', 'codeformer.pth')
class FaceSwapPipeline:
"""Direct face swap + optional enhancement pipeline.
Lifecycle:
1. initialize() -> loads detector/recognizer (buffalo_l) and inswapper onnx
2. set_source_image(image_bytes|np.array) -> extracts source identity face object
3. process_frame(frame) -> swap all or top-N faces using source face
4. (optional) CodeFormer enhancement (always attempted if model present)
"""
def __init__(self):
self.initialized = False
self.source_face = None
self.source_img_meta = {}
# Legacy compatibility flags expected by old WebRTC data channel handlers
# 'loaded' previously indicated full reenactment stack ready; here it maps to self.initialized
self.loaded = False
# Single enhancer path: CodeFormer (optional)
self.max_faces = int(os.getenv('MIRAGE_MAX_FACES', '1'))
# CodeFormer config / controls
self.codeformer_enabled = os.getenv('MIRAGE_CODEFORMER_ENABLED', '1').lower() in ('1','true','yes','on')
self.codeformer_frame_stride = int(os.getenv('MIRAGE_CODEFORMER_FRAME_STRIDE', '1') or '1')
if self.codeformer_frame_stride < 1:
self.codeformer_frame_stride = 1
self.codeformer_face_only = os.getenv('MIRAGE_CODEFORMER_FACE_ONLY', '0').lower() in ('1','true','yes','on')
self.codeformer_face_margin = float(os.getenv('MIRAGE_CODEFORMER_MARGIN', '0.15'))
self._stats = {
'frames': 0,
'last_latency_ms': None,
'avg_latency_ms': None,
'swap_faces_last': 0,
'enhanced_frames': 0,
# New diagnostic counters
'early_no_source': 0,
'early_uninitialized': 0,
'frames_no_faces': 0,
'total_faces_detected': 0,
'total_faces_swapped': 0,
'swap_failures': 0,
'cached_face_reuses': 0,
# Brightness / quality tracking
'frames_low_brightness': 0,
'brightness_last': None,
# Similarity metrics
'last_primary_similarity': None,
}
self._lat_hist: List[float] = []
self._codeformer_lat_hist: List[float] = []
self._frame_index = 0
self._last_faces_cache: List[Any] | None = None
self.app: Optional[FaceAnalysis] = None
self.swapper = None
self.codeformer = None
self.codeformer_fidelity = float(os.getenv('MIRAGE_CODEFORMER_FIDELITY', '0.75'))
self.codeformer_loaded = False
self.codeformer_error: str | None = None
# Debug verbosity for swap decisions
self.swap_debug = os.getenv('MIRAGE_SWAP_DEBUG', '0').lower() in ('1','true','yes','on')
# Brightness compensation configuration
self.enable_brightness_comp = os.getenv('MIRAGE_BRIGHTNESS_COMP', '1').lower() in ('1','true','yes','on')
self.target_brightness = float(os.getenv('MIRAGE_TARGET_BRIGHTNESS', '90')) # mean luminance target (0-255)
self.low_brightness_threshold = float(os.getenv('MIRAGE_LOW_BRIGHTNESS_THRESH', '40'))
# Similarity threshold for logging (cosine similarity typical range [-1,1])
self.similarity_warn_threshold = float(os.getenv('MIRAGE_SIMILARITY_WARN', '0.15'))
# Temporal reuse configuration
self.face_cache_ttl = int(os.getenv('MIRAGE_FACE_CACHE_TTL', '5') or '5') # frames
self._cached_face = None
self._cached_face_age = 0
# Aggressive blend toggle for visibility
self.aggressive_blend = os.getenv('MIRAGE_AGGRESSIVE_BLEND', '0').lower() in ('1','true','yes','on')
# Optional face ROI upscaling for tiny faces
self.face_min_size = int(os.getenv('MIRAGE_FACE_MIN_SIZE', '80') or '80')
self.face_upscale_factor = float(os.getenv('MIRAGE_FACE_UPSCALE', '1.6'))
# Toggle for (currently disabled) naive small-face upscale path that caused artifacts
# Default OFF to prevent black rectangle artifacts observed when re-pasting scaled ROI
self.enable_face_upscale = os.getenv('MIRAGE_FACE_UPSCALE_ENABLE', '0').lower() in ('1','true','yes','on')
# Detector preprocessing (CLAHE) low light
self.det_clahe = os.getenv('MIRAGE_DET_CLAHE', '1').lower() in ('1','true','yes','on')
# End-to-end latency markers
self._last_e2e_ms = None
self._e2e_hist: List[float] = []
# Track model file actually loaded for diagnostics
self.inswapper_model_path: str | None = None
# Resource monitoring
self._gpu_memory_warning_threshold = float(os.getenv('MIRAGE_GPU_MEMORY_WARN_GB', '0.5'))
self._last_memory_check = 0
self._memory_check_interval = 50 # frames between GPU memory checks
# Periodic structured logging interval (in frames) for runtime diagnostics
try:
# Default every 120 frames unless explicitly disabled (roughly ~4s at 30fps)
self.log_interval = int(os.getenv('MIRAGE_SWAP_LOG_INTERVAL', '120') or '120')
except Exception:
self.log_interval = 0 # disabled if invalid
def _log_periodic(self):
"""Emit a concise structured log line every N frames if enabled.
Controlled by MIRAGE_SWAP_LOG_INTERVAL (>0). Keeps log volume bounded while
still providing real-time observability in production (e.g. container logs).
"""
if not self.log_interval or self.log_interval < 1:
return
frames = self._stats['frames']
if frames == 0 or (frames % self.log_interval) != 0:
return
# Batch access to avoid repeated dict lookups
s = self._stats
lat_last = s['last_latency_ms']
lat_avg = s['avg_latency_ms']
brightness = s['brightness_last']
similarity = s['last_primary_similarity']
# Pre-format numbers to avoid repeated formatting in join
parts = [
f"frames={frames}",
f"swap_last={s['swap_faces_last']}",
f"swapped_total={s['total_faces_swapped']}",
f"detected_total={s['total_faces_detected']}",
f"no_face_frames={s['frames_no_faces']}",
f"cache_reuses={s['cached_face_reuses']}",
f"swap_failures={s['swap_failures']}",
f"lat_ms_last={lat_last:.1f}" if lat_last is not None else "lat_ms_last=None",
f"lat_ms_avg={lat_avg:.1f}" if lat_avg is not None else "lat_ms_avg=None",
f"e2e_ms_last={self._last_e2e_ms:.1f}" if self._last_e2e_ms is not None else "e2e_ms_last=None",
f"brightness_last={brightness:.1f}" if brightness is not None else "brightness_last=None",
f"low_brightness_frames={s['frames_low_brightness']}",
f"primary_sim={similarity:.3f}" if similarity is not None else "primary_sim=None",
f"early_uninit={s['early_uninitialized']}",
f"early_no_source={s['early_no_source']}",
f"cf_enhanced={s['enhanced_frames']}",
]
if self.codeformer_error:
parts.append(f"cf_err={self.codeformer_error}")
logger.info("pipeline_stats " + ' '.join(parts))
def _check_gpu_memory(self):
"""Monitor GPU memory usage to detect resource exhaustion early"""
try:
import torch
if torch.cuda.is_available():
allocated_gb = torch.cuda.memory_allocated() / (1024**3)
reserved_gb = torch.cuda.memory_reserved() / (1024**3)
if allocated_gb > self._gpu_memory_warning_threshold:
logger.warning(f"High GPU memory usage: allocated={allocated_gb:.2f}GB reserved={reserved_gb:.2f}GB")
return False
return True
except Exception:
pass
return True # Assume OK if we can't check
def initialize(self):
if self.initialized:
return True
providers = self._select_providers()
if insightface is None or FaceAnalysis is None:
raise ImportError("insightface (and its deps like onnxruntime) not available. Ensure onnxruntime, onnx, torch installed.")
self.app = FaceAnalysis(name='buffalo_l', providers=providers)
self.app.prepare(ctx_id=0, det_size=(640,640))
# Capture active providers after prepare (best effort)
try:
self._active_providers = getattr(self.app, 'providers', providers)
except Exception:
self._active_providers = providers
# Load swapper
model_path = INSWAPPER_ONNX_PATH
if not os.path.isfile(model_path):
if os.path.isfile(ALT_INSWAPPER_PATH):
model_path = ALT_INSWAPPER_PATH
else:
raise FileNotFoundError(f"Missing InSwapper model (checked {INSWAPPER_ONNX_PATH} and {ALT_INSWAPPER_PATH})")
self.swapper = insightface.model_zoo.get_model(model_path, providers=providers)
self.inswapper_model_path = model_path
logger.info(f"Loaded InSwapper model: {model_path}")
# Optional CodeFormer enhancer
if self.codeformer_enabled:
self._try_load_codeformer()
self.initialized = True
self.loaded = True # legacy attribute for external checks
logger.info('FaceSwapPipeline initialized')
return True
def _select_providers(self) -> List[str] | None:
"""Decide ONNX Runtime providers with GPU preference and diagnostics.
Env controls:
MIRAGE_FORCE_CPU=1 -> force CPU only
MIRAGE_CUDA_ONLY=1 -> request CUDA + CPU fallback (legacy name)
MIRAGE_REQUIRE_GPU=1 -> raise if CUDA provider not available
"""
force_cpu = os.getenv('MIRAGE_FORCE_CPU', '0').lower() in ('1','true','yes','on')
require_gpu = os.getenv('MIRAGE_REQUIRE_GPU', '0').lower() in ('1','true','yes','on')
cuda_only_flag = os.getenv('MIRAGE_CUDA_ONLY', '0').lower() in ('1','true','yes','on')
try:
import onnxruntime as ort # type: ignore
avail = ort.get_available_providers()
try:
ver = ort.__version__ # type: ignore
except Exception:
ver = 'unknown'
logger.info(f"[providers] onnxruntime {ver} available={avail}")
except Exception as e: # noqa: BLE001
logger.warning(f"ONNX Runtime not importable ({e}); letting insightface choose default providers")
return None
if force_cpu:
logger.info('[providers] MIRAGE_FORCE_CPU=1 -> using CPUExecutionProvider only')
return ['CPUExecutionProvider'] if 'CPUExecutionProvider' in avail else None
providers: List[str] = []
if 'CUDAExecutionProvider' in avail:
providers.append('CUDAExecutionProvider')
if 'CPUExecutionProvider' in avail:
providers.append('CPUExecutionProvider')
if 'CUDAExecutionProvider' not in providers:
msg = '[providers] CUDAExecutionProvider NOT available; running on CPU'
if require_gpu or cuda_only_flag:
# escalate to warning / potential exception
logger.warning(msg + ' (require_gpu flag set)')
if require_gpu:
raise RuntimeError('GPU required but CUDAExecutionProvider unavailable')
else:
logger.info(msg)
else:
logger.info(f"[providers] Using providers order: {providers}")
return providers or None
def _ensure_repo_clone(self, target_dir: str) -> bool:
"""Clone CodeFormer repo shallowly if missing. Returns True if directory exists after call."""
try:
if os.path.isdir(target_dir) and os.path.isdir(os.path.join(target_dir, '.git')):
return True
import subprocess, shlex
os.makedirs(target_dir, exist_ok=True)
# If directory empty, clone
if not any(os.scandir(target_dir)):
logger.info('Cloning CodeFormer repository (shallow)...')
cmd = f"git clone --depth 1 https://github.com/sczhou/CodeFormer.git {shlex.quote(target_dir)}"
subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return True
except Exception as e: # noqa: BLE001
logger.warning(f"CodeFormer auto-clone failed: {e}")
return False
def _try_load_codeformer(self): # pragma: no cover (runtime GPU path)
if not os.path.isfile(CODEFORMER_PATH):
logger.warning(f"CodeFormer weight missing; skipping: {CODEFORMER_PATH}")
return
repo_root = os.path.join('models', 'codeformer_repo')
try:
if self._ensure_repo_clone(repo_root):
for extra in (repo_root, os.path.join(repo_root, 'CodeFormer')):
if os.path.isdir(extra) and extra not in sys.path:
sys.path.insert(0, extra)
except Exception as clone_err: # noqa: BLE001
logger.debug(f"CodeFormer repo clone/setup failed (continuing with installed packages): {clone_err}")
try:
import torch # type: ignore
except Exception:
logger.warning('Torch missing; cannot enable CodeFormer')
self.codeformer_error = 'torch_missing'
return
# Direct import path used by upstream project (packaged when installed)
# Primary expected path: basicsr.archs.* (weights independent). Some forks use codeformer.archs
CodeFormer = None # type: ignore
try:
from basicsr.archs.codeformer_arch import CodeFormer as _CF # type: ignore
CodeFormer = _CF # type: ignore
except Exception as e:
# Second import path attempt; if both fail capture reason
try:
from codeformer.archs.codeformer_arch import CodeFormer as _CF # type: ignore
CodeFormer = _CF # type: ignore
except Exception as e2:
self.codeformer_error = f"import_failed:{e2}"
logger.warning(f"CodeFormer import failed (basicsr & codeformer paths). Skipping enhancement. Root error: {e2}")
return
try:
from basicsr.archs.rrdbnet_arch import RRDBNet # noqa: F401
except Exception:
# Basicsr usually present (in requirements); if not, can't proceed
logger.warning('basicsr not available; skipping CodeFormer')
return
# facexlib is required for some preprocessing utilities; warn if absent (not fatal for direct arch usage)
try: # pragma: no cover
import facexlib # type: ignore # noqa: F401
except Exception:
logger.info('facexlib not installed; continuing (may reduce CodeFormer effectiveness)')
try:
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32','64','128','256']).to(device)
ckpt = torch.load(CODEFORMER_PATH, map_location='cpu')
if 'params_ema' in ckpt:
net.load_state_dict(ckpt['params_ema'], strict=False)
else:
# Some weights store under 'state_dict'
net.load_state_dict(ckpt.get('state_dict', ckpt), strict=False)
net.eval()
fidelity = min(max(self.codeformer_fidelity, 0.0), 1.0)
class _CFWrap:
def __init__(self, net, device, fidelity):
self.net = net
self.device = device
self.fidelity = fidelity
@torch.no_grad()
def enhance(self, img_bgr: np.ndarray) -> np.ndarray:
import torch, torch.nn.functional as F # type: ignore
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
tensor = torch.from_numpy(img).float().to(self.device) / 255.0
tensor = tensor.permute(2,0,1).unsqueeze(0)
try:
out = self.net(tensor, w=self.fidelity, adain=True)[0]
except Exception:
out = self.net(tensor, w=self.fidelity)[0]
out = (out.clamp(0,1)*255).byte().permute(1,2,0).cpu().numpy()
return cv2.cvtColor(out, cv2.COLOR_RGB2BGR)
self.codeformer = _CFWrap(net, device, fidelity)
self.codeformer_loaded = True
logger.info('CodeFormer fully loaded')
except Exception as e:
self.codeformer_error = f"init_failed:{e}"
logger.warning(f"CodeFormer final init failed: {e}")
self.codeformer = None
def _decode_image(self, data) -> np.ndarray:
if isinstance(data, bytes):
arr = np.frombuffer(data, np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
return img
if isinstance(data, np.ndarray):
return data
if hasattr(data, 'read'):
buff = data.read()
arr = np.frombuffer(buff, np.uint8)
return cv2.imdecode(arr, cv2.IMREAD_COLOR)
raise TypeError('Unsupported image input type')
def set_source_image(self, image_input) -> bool:
if not self.initialized:
self.initialize()
img = self._decode_image(image_input)
if img is None:
logger.error('Failed to decode source image')
return False
faces = self.app.get(img)
if not faces:
logger.error('No face detected in source image')
return False
# Choose the largest face by bbox area
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
faces.sort(key=_area, reverse=True)
self.source_face = faces[0]
self.source_img_meta = {'resolution': img.shape[:2], 'num_faces': len(faces)}
logger.info('Source face set')
return True
# Legacy method name alias used by some data channel messages
def set_reference_frame(self, image_input) -> bool: # pragma: no cover - thin shim
return self.set_source_image(image_input)
# Audio processing stubs (voice conversion not yet integrated in new simplified pipeline)
def process_audio_chunk(self, pcm_bytes: bytes) -> bytes: # pragma: no cover
"""Pass-through audio to satisfy legacy interface expectations.
Future: integrate voice conversion here. For now: return original audio data.
"""
return pcm_bytes
def process_frame(self, frame: np.ndarray) -> np.ndarray:
frame_in_ts = time.time()
if not self.initialized or self.swapper is None or self.app is None:
self._stats['early_uninitialized'] += 1
if self.swap_debug:
logger.debug('process_frame: pipeline not fully initialized yet')
return frame
if self.source_face is None:
self._stats['early_no_source'] += 1
if self.swap_debug:
logger.debug('process_frame: no source_face set yet')
return frame
t0 = time.time()
# Brightness analysis (grayscale mean) to understand low-light degradation
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
brightness = float(np.mean(gray))
self._stats['brightness_last'] = brightness
if brightness < self.low_brightness_threshold:
self._stats['frames_low_brightness'] += 1
if self.enable_brightness_comp:
# Simple gamma / gain compensation (scale then clip)
gain = self.target_brightness / max(1.0, brightness)
gain = min(gain, 3.0) # clamp to avoid noise amplification
frame = np.clip(frame.astype(np.float32) * gain, 0, 255).astype(np.uint8)
if self.swap_debug:
logger.debug(f'Applied brightness compensation gain={gain:.2f} (brightness={brightness:.1f})')
except Exception:
pass
# Detector preprocessing path for improved low-light detect
det_input = frame
if self.det_clahe:
try:
gray_det = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if float(np.mean(gray_det)) < (self.low_brightness_threshold + 15):
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
eq = clahe.apply(gray_det)
det_input = cv2.cvtColor(eq, cv2.COLOR_GRAY2BGR)
except Exception:
pass
faces = self.app.get(det_input)
self._last_faces_cache = faces
no_detection = not faces
if no_detection:
# Attempt temporal reuse of last successful face if within ttl
if self._cached_face is not None and self._cached_face_age < self.face_cache_ttl:
faces = [self._cached_face]
self._cached_face_age += 1
if self.swap_debug:
logger.debug(f'process_frame: reusing cached face (age={self._cached_face_age})')
else:
self._cached_face = None
self._cached_face_age = 0
if self.swap_debug:
logger.debug('process_frame: no faces detected, no valid cache')
self._record_latency(time.time() - t0)
self._stats['swap_faces_last'] = 0
self._stats['frames_no_faces'] += 1
self._stats['frames'] += 1
self._frame_index += 1
self._log_periodic()
return frame
# Track if we used cached face and accumulate total faces detected
if no_detection and faces: # faces populated from cache
self._stats['cached_face_reuses'] += 1
elif faces: # fresh detection
self._stats['total_faces_detected'] += len(faces)
# Apply face size filter if enabled
if faces and self.face_min_size > 0:
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
filtered_faces = []
for face in faces:
x1,y1,x2,y2 = face.bbox.astype(int)
width, height = x2-x1, y2-y1
if min(width, height) >= self.face_min_size:
filtered_faces.append(face)
faces = filtered_faces
# Sort faces by area and keep top-N
if faces:
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
faces.sort(key=_area, reverse=True)
# Periodic GPU memory check
if self._frame_index > 0 and (self._frame_index % self._memory_check_interval) == 0:
if not self._check_gpu_memory():
logger.warning("GPU memory pressure detected - performance may degrade")
out = frame
count = 0
similarities: List[float] = []
for idx, f in enumerate(faces[:self.max_faces]):
try:
# Compute similarity to source embedding (cosine) for diagnostics
try:
src_emb = getattr(self.source_face, 'normed_embedding', None)
tgt_emb = getattr(f, 'normed_embedding', None)
sim = None
if src_emb is not None and tgt_emb is not None:
# Both are numpy arrays
a = src_emb.astype(np.float32)
b = tgt_emb.astype(np.float32)
denom = (np.linalg.norm(a)*np.linalg.norm(b) + 1e-6)
sim = float(np.dot(a, b) / denom)
similarities.append(sim)
if idx == 0:
self._stats['last_primary_similarity'] = sim
if self.swap_debug and sim is not None and sim < self.similarity_warn_threshold:
logger.debug(f'Low similarity primary face sim={sim:.3f}')
except Exception:
pass
# NOTE: Previously attempted naive small-face ROI upscale introduced moving black box artifacts
# because face landmark coordinates remained in original frame space. We disable that path by default.
# If re-enabled in future, we must recompute detection landmarks on the upscaled ROI.
try:
out = self.swapper.get(out, f, self.source_face, paste_back=True)
count += 1
except Exception as e:
self._stats['swap_failures'] += 1
logger.debug(f"Swap failed for face {idx}: {e}")
except Exception as e:
self._stats['swap_failures'] += 1
logger.debug(f"Face processing failed for face {idx}: {e}")
self._stats['total_faces_swapped'] += count
# Cache first face for reuse
if faces:
self._cached_face = faces[0]
self._cached_face_age = 0
# Optional debug overlay for visual confirmation
if count > 0 and os.getenv('MIRAGE_DEBUG_OVERLAY', '0').lower() in ('1','true','yes','on'):
try:
for i, f in enumerate(faces[:self.max_faces]):
x1,y1,x2,y2 = f.bbox.astype(int)
cv2.rectangle(out, (x1,y1), (x2,y2), (0,255,0), 2)
label = 'SWAP'
if i < len(similarities) and similarities[i] is not None:
label += f' {similarities[i]:.2f}'
cv2.putText(out, label, (x1, max(0,y1-5)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1, cv2.LINE_AA)
except Exception:
pass
if self.swap_debug:
logger.debug(f'process_frame: detected={len(faces)} swapped={count} stride={self.codeformer_frame_stride} apply_cf={count>0 and (self._frame_index % self.codeformer_frame_stride == 0)}')
# CodeFormer stride / face-region logic
apply_cf = (
self.codeformer is not None and
self.codeformer_enabled and
self.codeformer_frame_stride > 0 and
(self._frame_index % self.codeformer_frame_stride == 0)
)
if count > 0 and apply_cf:
cf_t0 = time.time()
try:
if self.codeformer_face_only and faces:
# Use largest face bbox
f0 = faces[0]
x1,y1,x2,y2 = f0.bbox.astype(int)
h, w = out.shape[:2]
mx = int((x2 - x1) * self.codeformer_face_margin)
my = int((y2 - y1) * self.codeformer_face_margin)
x1c = max(0, x1 - mx); y1c = max(0, y1 - my)
x2c = min(w, x2 + mx); y2c = min(h, y2 + my)
region = out[y1c:y2c, x1c:x2c]
if region.size > 0:
enhanced = self.codeformer.enhance(region)
out[y1c:y2c, x1c:x2c] = enhanced
else:
out = self.codeformer.enhance(out)
self._stats['enhanced_frames'] += 1
cf_dt = (time.time() - cf_t0)*1000.0
self._codeformer_lat_hist.append(cf_dt)
if len(self._codeformer_lat_hist) > 200:
self._codeformer_lat_hist.pop(0)
except Exception as e:
logger.debug(f"CodeFormer enhancement failed: {e}")
self._record_latency(time.time() - t0)
self._stats['swap_faces_last'] = count
self._stats['frames'] += 1
self._frame_index += 1
# End-to-end latency including pre-detection + swap path
self._last_e2e_ms = (time.time() - frame_in_ts) * 1000.0
self._e2e_hist.append(self._last_e2e_ms)
if len(self._e2e_hist) > 200:
self._e2e_hist.pop(0)
# Periodic log emission
self._log_periodic()
return out
def _record_latency(self, dt: float):
ms = dt * 1000.0
self._stats['last_latency_ms'] = ms
self._lat_hist.append(ms)
if len(self._lat_hist) > 200:
self._lat_hist.pop(0)
self._stats['avg_latency_ms'] = float(np.mean(self._lat_hist)) if self._lat_hist else None
def get_stats(self) -> Dict[str, Any]:
cf_avg = float(np.mean(self._codeformer_lat_hist)) if self._codeformer_lat_hist else None
info: Dict[str, Any] = dict(
self._stats,
initialized=self.initialized,
codeformer_fidelity=self.codeformer_fidelity if self.codeformer is not None else None,
codeformer_loaded=self.codeformer_loaded,
codeformer_frame_stride=self.codeformer_frame_stride,
codeformer_face_only=self.codeformer_face_only,
codeformer_avg_latency_ms=cf_avg,
max_faces=self.max_faces,
debug_overlay=os.getenv('MIRAGE_DEBUG_OVERLAY', '0'),
e2e_latency_ms=self._last_e2e_ms,
e2e_latency_avg_ms=(float(np.mean(self._e2e_hist)) if self._e2e_hist else None),
inswapper_model_path=self.inswapper_model_path,
face_upscale_enabled=self.enable_face_upscale,
codeformer_error=self.codeformer_error,
)
# Provider diagnostics (best-effort)
try: # pragma: no cover
import onnxruntime as ort # type: ignore
info['available_providers'] = ort.get_available_providers()
info['active_providers'] = getattr(self, '_active_providers', None)
except Exception:
pass
return info
# Legacy interface used by webrtc_server data channel
def get_performance_stats(self) -> Dict[str, Any]: # pragma: no cover simple delegate
stats = self.get_stats()
# Provide alias field names expected historically (if any)
stats['frames_processed'] = stats.get('frames')
return stats
# Backwards compatibility for earlier server expecting process_video_frame
def process_video_frame(self, frame: np.ndarray, frame_idx: int | None = None) -> np.ndarray:
return self.process_frame(frame)
def cleanup_resources(self):
"""Clean up GPU resources to prevent hang on reconnection"""
try:
if hasattr(self, 'swapper') and self.swapper is not None:
# Force garbage collection of ONNX sessions
del self.swapper
self.swapper = None
if hasattr(self, 'codeformer') and self.codeformer is not None:
del self.codeformer
self.codeformer = None
self.codeformer_loaded = False
# Clear GPU cache if available
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU cache cleared during cleanup")
except Exception:
pass
logger.info("Pipeline resources cleaned up")
except Exception as e:
logger.warning(f"Resource cleanup failed: {e}")
def reset_for_reconnection(self):
"""Reset pipeline state for clean reconnection without full reinitialization"""
# Clear cached face to prevent stale data
self._cached_face = None
self._cached_face_age = 0
# Reset some stats but keep totals for debugging
self._stats['swap_faces_last'] = 0
self._stats['brightness_last'] = None
self._stats['last_primary_similarity'] = None
# Clear latency histories to start fresh
self._lat_hist.clear()
self._e2e_hist.clear()
self._codeformer_lat_hist.clear()
# Force GPU memory cleanup to prevent hanging on reconnection
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize() # Ensure all operations complete
logger.info("GPU cache cleared and synchronized during reset")
except Exception:
pass
logger.info("Pipeline state reset for reconnection")
# Singleton access similar to previous pattern
_pipeline_instance: Optional[FaceSwapPipeline] = None
def get_pipeline() -> FaceSwapPipeline:
global _pipeline_instance
if _pipeline_instance is None:
_pipeline_instance = FaceSwapPipeline()
_pipeline_instance.initialize()
return _pipeline_instance
def reset_pipeline():
"""Reset pipeline for clean reconnection - called by WebRTC server on connection reset"""
global _pipeline_instance
if _pipeline_instance is not None:
_pipeline_instance.reset_for_reconnection()
def cleanup_pipeline():
"""Full cleanup for shutdown - releases GPU resources"""
global _pipeline_instance
if _pipeline_instance is not None:
_pipeline_instance.cleanup_resources()
_pipeline_instance = None
|