mirage / fastapi_app.py
MacBook pro
Optimize for HuggingFace Spaces: simplified Gradio interface and reduced dependencies
755d25a
raw
history blame
13.2 kB
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, HTTPException, File, UploadFile
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from pathlib import Path
import traceback
import time
import array
import subprocess
import json
import os
import asyncio
import numpy as np
import cv2
from typing import Any, Dict, List
from metrics import metrics as _metrics_singleton, Metrics
from config import config
from voice_processor import voice_processor
from avatar_pipeline import get_pipeline
app = FastAPI(title="Mirage Real-time AI Avatar System")
# Initialize AI pipeline
pipeline = get_pipeline()
pipeline_initialized = False
# Potentially reconfigure metrics based on config
if config.metrics_fps_window != 30: # default in metrics module
metrics = Metrics(fps_window=config.metrics_fps_window)
else:
metrics = _metrics_singleton
# Mount the static directory
static_dir = Path(__file__).parent / "static"
app.mount("/static", StaticFiles(directory=str(static_dir)), name="static")
@app.get("/", response_class=HTMLResponse)
async def root():
"""Serve the static/index.html file contents as HTML."""
index_path = static_dir / "index.html"
try:
content = index_path.read_text(encoding="utf-8")
except FileNotFoundError:
# Minimal fallback to satisfy route even if file not yet present.
content = "<html><body><h1>Mirage AI Avatar System</h1><p>Real-time AI avatar with face animation and voice conversion.</p></body></html>"
return HTMLResponse(content)
@app.get("/health")
async def health():
return {
"status": "ok",
"system": "real-time-ai-avatar",
"pipeline_loaded": pipeline_initialized,
"gpu_available": pipeline.config.device == "cuda"
}
@app.post("/initialize")
async def initialize_pipeline():
"""Initialize the AI pipeline"""
global pipeline_initialized
if pipeline_initialized:
return {"status": "already_initialized", "message": "Pipeline already loaded"}
try:
success = await pipeline.initialize()
if success:
pipeline_initialized = True
return {"status": "success", "message": "Pipeline initialized successfully"}
else:
return {"status": "error", "message": "Failed to initialize pipeline"}
except Exception as e:
return {"status": "error", "message": f"Initialization error: {str(e)}"}
@app.post("/set_reference")
async def set_reference_image(file: UploadFile = File(...)):
"""Set reference image for avatar"""
global pipeline_initialized
if not pipeline_initialized:
raise HTTPException(status_code=400, detail="Pipeline not initialized")
try:
# Read uploaded image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
raise HTTPException(status_code=400, detail="Invalid image format")
# Set as reference frame
success = pipeline.set_reference_frame(frame)
if success:
return {"status": "success", "message": "Reference image set successfully"}
else:
return {"status": "error", "message": "No suitable face found in image"}
except Exception as e:
return {"status": "error", "message": f"Error setting reference: {str(e)}"}
# Frame counter for processing
frame_counter = 0
async def _process_websocket(websocket: WebSocket, kind: str):
"""Enhanced WebSocket handler with AI processing"""
global frame_counter, pipeline_initialized
await websocket.accept()
last_ts = time.time() * 1000.0 if kind == "audio" else None
while True:
try:
data = await websocket.receive_bytes()
size = len(data)
if kind == "audio":
now = time.time() * 1000.0
interval = None
if last_ts is not None:
interval = now - last_ts
infer_ms = None
# Convert raw bytes -> int16 array for processing path
pcm_int16 = array.array('h')
pcm_int16.frombytes(data)
if config.voice_enable and pipeline_initialized:
# AI voice conversion
audio_np = np.array(pcm_int16, dtype=np.int16)
processed_audio = pipeline.process_audio_chunk(audio_np)
data = processed_audio.astype(np.int16).tobytes()
infer_ms = 50 # Placeholder timing
elif config.voice_enable:
# Fallback to voice processor
processed_view, infer_ms = voice_processor.process_pcm_int16(pcm_int16.tobytes(), sample_rate=16000)
data = processed_view.tobytes()
else:
# Pass-through
data = pcm_int16.tobytes()
metrics.record_audio_chunk(size_bytes=size, loop_interval_ms=interval, infer_time_ms=infer_ms)
last_ts = now
elif kind == "video":
if pipeline_initialized:
try:
# Decode JPEG frame
nparr = np.frombuffer(data, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is not None:
# AI face animation
processed_frame = pipeline.process_video_frame(frame, frame_counter)
frame_counter += 1
# Encode back to JPEG
_, encoded = cv2.imencode('.jpg', processed_frame, [cv2.IMWRITE_JPEG_QUALITY, 65])
data = encoded.tobytes()
except Exception as e:
print(f"Video processing error: {e}")
# Fallback to original data
pass
metrics.record_video_frame(size_bytes=size)
# Send processed data back
await websocket.send_bytes(data)
except WebSocketDisconnect:
break
except Exception:
print(f"[{kind} ws] Unexpected error:")
traceback.print_exc()
break
@app.websocket("/audio")
async def audio_ws(websocket: WebSocket):
await _process_websocket(websocket, "audio")
@app.websocket("/video")
async def video_ws(websocket: WebSocket):
await _process_websocket(websocket, "video")
@app.get("/metrics")
async def get_metrics():
base_metrics = metrics.snapshot()
# Add AI pipeline metrics if available
if pipeline_initialized:
pipeline_stats = pipeline.get_performance_stats()
base_metrics.update({
"ai_pipeline": pipeline_stats
})
return base_metrics
@app.get("/pipeline_status")
async def get_pipeline_status():
"""Get detailed pipeline status"""
if not pipeline_initialized:
return {
"initialized": False,
"message": "Pipeline not initialized"
}
try:
stats = pipeline.get_performance_stats()
return {
"initialized": True,
"stats": stats,
"reference_set": pipeline.reference_frame is not None
}
except Exception as e:
return {
"initialized": False,
"error": str(e)
}
@app.get("/gpu")
async def gpu_info():
"""Return basic GPU availability and memory statistics.
Priority order:
1. torch (if installed and CUDA available) for detailed stats per device.
2. nvidia-smi (if executable present) for name/total/used.
3. Fallback: available false.
"""
# Response scaffold
resp: Dict[str, Any] = {
"available": False,
"provider": None,
"device_count": 0,
"devices": [], # type: ignore[list-item]
}
# Try torch first (lazy import)
try:
import torch # type: ignore
if torch.cuda.is_available():
resp["available"] = True
resp["provider"] = "torch"
count = torch.cuda.device_count()
resp["device_count"] = count
devices: List[Dict[str, Any]] = []
for idx in range(count):
name = torch.cuda.get_device_name(idx)
try:
free_bytes, total_bytes = torch.cuda.mem_get_info(idx) # type: ignore[arg-type]
except TypeError:
# Older PyTorch versions take no index
free_bytes, total_bytes = torch.cuda.mem_get_info()
allocated = torch.cuda.memory_allocated(idx)
reserved = torch.cuda.memory_reserved(idx)
# Estimate free including unallocated reserved as reclaimable
est_free = free_bytes + max(reserved - allocated, 0)
to_mb = lambda b: round(b / (1024 * 1024), 2)
devices.append({
"index": idx,
"name": name,
"total_mb": to_mb(total_bytes),
"allocated_mb": to_mb(allocated),
"reserved_mb": to_mb(reserved),
"free_mem_get_info_mb": to_mb(free_bytes),
"free_estimate_mb": to_mb(est_free),
})
resp["devices"] = devices
return resp
except Exception: # noqa: BLE001
# Torch not installed or failed; fall through to nvidia-smi
pass
# Try nvidia-smi fallback
try:
cmd = [
"nvidia-smi",
"--query-gpu=name,memory.total,memory.used",
"--format=csv,noheader,nounits",
]
out = subprocess.check_output(cmd, stderr=subprocess.STDOUT, timeout=2).decode("utf-8").strip()
lines = [l for l in out.splitlines() if l.strip()]
if lines:
resp["available"] = True
resp["provider"] = "nvidia-smi"
resp["device_count"] = len(lines)
devices: List[Dict[str, Any]] = []
for idx, line in enumerate(lines):
# Expect: name, total, used
parts = [p.strip() for p in line.split(',')]
if len(parts) >= 3:
name, total_str, used_str = parts[:3]
try:
total = float(total_str)
used = float(used_str)
free = max(total - used, 0)
except ValueError:
total = used = free = 0.0
devices.append({
"index": idx,
"name": name,
"total_mb": total,
"allocated_mb": used, # approximate
"reserved_mb": None,
"free_estimate_mb": free,
})
resp["devices"] = devices
return resp
except Exception: # noqa: BLE001
pass
return resp
@app.on_event("startup")
async def log_config():
# Enhanced startup logging: core config + GPU availability summary.
cfg = config.as_dict()
# GPU probe (reuse gpu_info logic minimally without full device list to keep log concise)
gpu_available = False
gpu_name = None
try:
import torch # type: ignore
if torch.cuda.is_available():
gpu_available = True
gpu_name = torch.cuda.get_device_name(0)
else:
# Fallback quick nvidia-smi single line
try:
out = subprocess.check_output([
"nvidia-smi", "--query-gpu=name", "--format=csv,noheader,nounits"
], stderr=subprocess.STDOUT, timeout=1).decode("utf-8").strip().splitlines()
if out:
gpu_available = True
gpu_name = out[0].strip()
except Exception: # noqa: BLE001
pass
except Exception: # noqa: BLE001
pass
# Honor dynamic PORT if provided (HF Spaces usually fixed at 7860 for docker, but logging helps debugging)
listen_port = int(os.getenv("PORT", "7860"))
startup_line = {
"chunk_ms": cfg.get("chunk_ms"),
"voice_enabled": cfg.get("voice_enable"),
"metrics_fps_window": cfg.get("metrics_fps_window"),
"video_fps_limit": cfg.get("video_max_fps"),
"port": listen_port,
"gpu_available": gpu_available,
"gpu_name": gpu_name,
}
print("[startup]", startup_line)
# Note: The Dockerfile / README launch with: uvicorn app:app --port 7860
if __name__ == "__main__": # Optional direct run helper
import uvicorn # type: ignore
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=False)