mirage / test_system.py
MacBook pro
feat(docker): switch to Docker Space GPU runtime; prod WebRTC (aiortc) flow; remove legacy WS; token auth; instrumentation p50/p95; requirements harden
d876213
"""
Testing and Validation Suite for Mirage AI Avatar System
Tests end-to-end functionality, latency, and performance
"""
import asyncio
import time
import aiohttp
import json
import numpy as np
import cv2
import logging
from pathlib import Path
import subprocess
import psutil
from typing import Dict, Any, List
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MirageSystemTester:
"""Comprehensive testing suite for the AI avatar system"""
def __init__(self, base_url: str = "http://localhost:7860"):
self.base_url = base_url
self.session = None
self.test_results = {}
async def __aenter__(self):
self.session = aiohttp.ClientSession()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.session:
await self.session.close()
async def test_health_endpoint(self) -> bool:
"""Test basic health endpoint"""
try:
async with self.session.get(f"{self.base_url}/health") as response:
data = await response.json()
success = (
response.status == 200 and
data.get("status") == "ok" and
data.get("system") == "real-time-ai-avatar"
)
self.test_results["health"] = {
"success": success,
"status": response.status,
"data": data
}
logger.info(f"Health check: {'βœ… PASS' if success else '❌ FAIL'}")
return success
except Exception as e:
logger.error(f"Health check failed: {e}")
self.test_results["health"] = {"success": False, "error": str(e)}
return False
async def test_pipeline_initialization(self) -> bool:
"""Test AI pipeline initialization"""
try:
start_time = time.time()
async with self.session.post(f"{self.base_url}/initialize") as response:
data = await response.json()
init_time = time.time() - start_time
success = (
response.status == 200 and
data.get("status") in ["success", "already_initialized"]
)
self.test_results["initialization"] = {
"success": success,
"status": response.status,
"data": data,
"init_time_seconds": init_time
}
logger.info(f"Pipeline init: {'βœ… PASS' if success else '❌ FAIL'} ({init_time:.1f}s)")
return success
except Exception as e:
logger.error(f"Pipeline initialization failed: {e}")
self.test_results["initialization"] = {"success": False, "error": str(e)}
return False
async def test_reference_image_upload(self) -> bool:
"""Test reference image upload functionality"""
try:
# Create a test image
test_image = np.zeros((512, 512, 3), dtype=np.uint8)
cv2.circle(test_image, (256, 200), 50, (255, 255, 255), -1) # Face-like circle
cv2.circle(test_image, (230, 180), 10, (0, 0, 0), -1) # Eye
cv2.circle(test_image, (280, 180), 10, (0, 0, 0), -1) # Eye
cv2.ellipse(test_image, (256, 220), (20, 10), 0, 0, 180, (0, 0, 0), 2) # Mouth
# Encode as JPEG
_, encoded = cv2.imencode('.jpg', test_image)
image_data = encoded.tobytes()
# Upload test image
form_data = aiohttp.FormData()
form_data.add_field('file', image_data, filename='test_face.jpg', content_type='image/jpeg')
async with self.session.post(f"{self.base_url}/set_reference", data=form_data) as response:
data = await response.json()
success = (
response.status == 200 and
data.get("status") == "success"
)
self.test_results["reference_upload"] = {
"success": success,
"status": response.status,
"data": data
}
logger.info(f"Reference upload: {'βœ… PASS' if success else '❌ FAIL'}")
return success
except Exception as e:
logger.error(f"Reference image upload failed: {e}")
self.test_results["reference_upload"] = {"success": False, "error": str(e)}
return False
async def test_websocket_connections(self) -> bool:
"""Test WebSocket connections for audio and video"""
try:
import websockets
# Test audio WebSocket
audio_success = await self._test_websocket_endpoint("/audio")
# Test video WebSocket
video_success = await self._test_websocket_endpoint("/video")
success = audio_success and video_success
self.test_results["websockets"] = {
"success": success,
"audio_success": audio_success,
"video_success": video_success
}
logger.info(f"WebSocket connections: {'βœ… PASS' if success else '❌ FAIL'}")
return success
except Exception as e:
logger.error(f"WebSocket test failed: {e}")
self.test_results["websockets"] = {"success": False, "error": str(e)}
return False
async def _test_websocket_endpoint(self, endpoint: str) -> bool:
"""Test a specific WebSocket endpoint"""
try:
import websockets
ws_url = self.base_url.replace("http://", "ws://") + endpoint
async with websockets.connect(ws_url) as websocket:
# Send test data
if endpoint == "/audio":
# Send 160ms of silence (16kHz, 16-bit)
test_audio = np.zeros(int(16000 * 0.160), dtype=np.int16)
await websocket.send(test_audio.tobytes())
else: # video
# Send a small test JPEG
test_frame = np.zeros((256, 256, 3), dtype=np.uint8)
_, encoded = cv2.imencode('.jpg', test_frame, [cv2.IMWRITE_JPEG_QUALITY, 50])
await websocket.send(encoded.tobytes())
# Wait for response
response = await asyncio.wait_for(websocket.recv(), timeout=5.0)
return len(response) > 0
except Exception as e:
logger.error(f"WebSocket {endpoint} test failed: {e}")
return False
async def test_performance_metrics(self) -> bool:
"""Test performance metrics endpoint"""
try:
async with self.session.get(f"{self.base_url}/pipeline_status") as response:
data = await response.json()
success = response.status == 200 and data.get("initialized", False)
self.test_results["performance_metrics"] = {
"success": success,
"status": response.status,
"data": data
}
if success:
stats = data.get("stats", {})
logger.info(f"Performance metrics: βœ… PASS")
logger.info(f" GPU Memory: {stats.get('gpu_memory_used', 0):.1f} GB")
logger.info(f" Video FPS: {stats.get('video_fps', 0):.1f}")
logger.info(f" Avg Latency: {stats.get('avg_video_latency_ms', 0):.1f} ms")
else:
logger.info("Performance metrics: ❌ FAIL")
return success
except Exception as e:
logger.error(f"Performance metrics test failed: {e}")
self.test_results["performance_metrics"] = {"success": False, "error": str(e)}
return False
async def test_latency_benchmark(self) -> Dict[str, float]:
"""Benchmark system latency"""
latencies = []
try:
# Warm up
for _ in range(5):
start_time = time.time()
async with self.session.get(f"{self.base_url}/health") as response:
await response.json()
latencies.append((time.time() - start_time) * 1000)
# Actual benchmark
latencies = []
for _ in range(20):
start_time = time.time()
async with self.session.get(f"{self.base_url}/pipeline_status") as response:
await response.json()
latencies.append((time.time() - start_time) * 1000)
results = {
"avg_latency_ms": np.mean(latencies),
"min_latency_ms": np.min(latencies),
"max_latency_ms": np.max(latencies),
"p95_latency_ms": np.percentile(latencies, 95),
"p99_latency_ms": np.percentile(latencies, 99)
}
self.test_results["latency_benchmark"] = results
logger.info("Latency benchmark results:")
logger.info(f" Average: {results['avg_latency_ms']:.1f} ms")
logger.info(f" P95: {results['p95_latency_ms']:.1f} ms")
logger.info(f" P99: {results['p99_latency_ms']:.1f} ms")
return results
except Exception as e:
logger.error(f"Latency benchmark failed: {e}")
return {}
def test_system_requirements(self) -> Dict[str, Any]:
"""Test system requirements and capabilities"""
results = {}
try:
# Check GPU availability
try:
import torch
results["gpu_available"] = torch.cuda.is_available()
if torch.cuda.is_available():
results["gpu_name"] = torch.cuda.get_device_name(0)
results["gpu_memory_gb"] = torch.cuda.get_device_properties(0).total_memory / 1024**3
results["cuda_version"] = torch.version.cuda
except ImportError:
results["gpu_available"] = False
# Check system resources
memory = psutil.virtual_memory()
results["system_memory_gb"] = memory.total / 1024**3
results["cpu_count"] = psutil.cpu_count()
# Check disk space
disk = psutil.disk_usage('/')
results["disk_free_gb"] = disk.free / 1024**3
# Check required packages
required_packages = [
"torch", "torchvision", "torchaudio", "opencv-python",
"numpy", "fastapi", "websockets"
]
missing_packages = []
for package in required_packages:
try:
__import__(package.replace("-", "_"))
except ImportError:
missing_packages.append(package)
results["missing_packages"] = missing_packages
results["requirements_met"] = len(missing_packages) == 0
self.test_results["system_requirements"] = results
logger.info("System requirements:")
logger.info(f" GPU: {'βœ…' if results['gpu_available'] else '❌'}")
logger.info(f" Memory: {results['system_memory_gb']:.1f} GB")
logger.info(f" CPU: {results['cpu_count']} cores")
logger.info(f" Packages: {'βœ…' if results['requirements_met'] else '❌'}")
return results
except Exception as e:
logger.error(f"System requirements check failed: {e}")
return {"error": str(e)}
async def run_comprehensive_test(self) -> Dict[str, Any]:
"""Run all tests and return comprehensive results"""
logger.info("πŸ§ͺ Starting comprehensive system test...")
# System requirements (runs first, no server needed)
self.test_system_requirements()
# Server-dependent tests
tests = [
("Health Check", self.test_health_endpoint()),
("Pipeline Initialization", self.test_pipeline_initialization()),
("Reference Image Upload", self.test_reference_image_upload()),
("WebSocket Connections", self.test_websocket_connections()),
("Performance Metrics", self.test_performance_metrics()),
]
# Run tests sequentially
for test_name, test_coro in tests:
logger.info(f"Running: {test_name}...")
try:
result = await test_coro
if not result:
logger.warning(f"{test_name} failed - may affect subsequent tests")
except Exception as e:
logger.error(f"{test_name} threw exception: {e}")
# Latency benchmark (runs last)
logger.info("Running latency benchmark...")
await self.test_latency_benchmark()
# Calculate overall success rate
successful_tests = sum(1 for result in self.test_results.values()
if isinstance(result, dict) and result.get("success", False))
total_tests = len([r for r in self.test_results.values() if isinstance(r, dict) and "success" in r])
overall_success = successful_tests / max(total_tests, 1) >= 0.8 # 80% success rate
summary = {
"overall_success": overall_success,
"successful_tests": successful_tests,
"total_tests": total_tests,
"success_rate": successful_tests / max(total_tests, 1),
"detailed_results": self.test_results
}
logger.info(f"🏁 Test completed: {successful_tests}/{total_tests} tests passed")
logger.info(f"Overall result: {'βœ… PASS' if overall_success else '❌ FAIL'}")
return summary
async def main():
"""Main test runner"""
import sys
base_url = sys.argv[1] if len(sys.argv) > 1 else "http://localhost:7860"
async with MirageSystemTester(base_url) as tester:
results = await tester.run_comprehensive_test()
# Save results to file
results_file = Path("test_results.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2, default=str)
logger.info(f"πŸ“Š Detailed results saved to: {results_file}")
# Exit with appropriate code
sys.exit(0 if results["overall_success"] else 1)
if __name__ == "__main__":
asyncio.run(main())