Upload 7 files
Browse files- biLSTM1.py +50 -0
- biLSTM_model_do_05_lr001_best.pt +3 -0
- history_do_05_lr001_best.txt +1 -0
- logistic_regression_model.pkl +3 -0
- lstm_preprocessing.py +78 -0
- tfidf_vectorizer.pkl +3 -0
- vocab_to_int.json +0 -0
biLSTM1.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchutils as tu
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class biLSTM(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
The LSTM model that will be used to perform Sentiment analysis.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(self,
|
| 13 |
+
# объем словаря, с которым мы работаем, размер входа для слоя Embedding
|
| 14 |
+
vocab_size: int,
|
| 15 |
+
# размер выходного эмбеддинга каждый элемент последовательности
|
| 16 |
+
# будет описан вектором такой размерности
|
| 17 |
+
embedding_dim: int,
|
| 18 |
+
# размерность hidden state LSTM слоя
|
| 19 |
+
hidden_dim: int,
|
| 20 |
+
# число слоев в LSTM
|
| 21 |
+
n_layers: int,
|
| 22 |
+
drop_prob=0.5,
|
| 23 |
+
seq_len = 128) -> None:
|
| 24 |
+
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.hidden_dim = hidden_dim
|
| 27 |
+
self.n_layers = n_layers
|
| 28 |
+
self.seq_len = seq_len
|
| 29 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
| 30 |
+
self.lstm = nn.LSTM(embedding_dim,
|
| 31 |
+
hidden_dim,
|
| 32 |
+
n_layers,
|
| 33 |
+
dropout=drop_prob,
|
| 34 |
+
batch_first=True,
|
| 35 |
+
bidirectional=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
self.do = nn.Dropout()
|
| 39 |
+
|
| 40 |
+
self.fc1 = nn.Linear(2*hidden_dim * self.seq_len, 256)
|
| 41 |
+
self.fc2 = nn.Linear(256, 1)
|
| 42 |
+
self.sigmoid = nn.Sigmoid()
|
| 43 |
+
|
| 44 |
+
def forward(self, x):
|
| 45 |
+
embeds = self.embedding(x)
|
| 46 |
+
lstm_out, _ = self.lstm(embeds)
|
| 47 |
+
out = self.fc2(torch.tanh(self.do(self.fc1(lstm_out.flatten(1)))))
|
| 48 |
+
sig_out = self.sigmoid(out)
|
| 49 |
+
|
| 50 |
+
return sig_out
|
biLSTM_model_do_05_lr001_best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2637ba70306b15159cd0b6fa890c2277390edc5ea93cdc63e580a4dd9ed92a6d
|
| 3 |
+
size 19147847
|
history_do_05_lr001_best.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{'train_losses': [0.5731778456687927, 0.4595582458972931, 0.3687778123021126, 0.35563799259662626, 0.3177712473154068, 0.29712616628408434, 0.2833286724328995, 0.2641707232952118, 0.25079714640378953], 'valid_losses': [0.5975278757321529, 0.5386148532613729, 0.5021108987812812, 0.5125980156545455, 0.4879682982961337, 0.5328947740296522, 0.4984460395211593, 0.5014419947297145, 0.4964689599015774], 'train_metric': [0.687675, 0.794925, 0.843925, 0.85195, 0.870875, 0.8851, 0.890425, 0.898875, 0.9035], 'valid_metric': [0.7419871794871795, 0.8210136217948718, 0.8392427884615384, 0.8481570512820513, 0.8505608974358975, 0.8615785256410257, 0.860176282051282, 0.858573717948718, 0.8645833333333334]}
|
logistic_regression_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d021f47f5848ca4112983aaa05ee2f2165b420fa21fa91b52af23563cfd3458b
|
| 3 |
+
size 1669478
|
lstm_preprocessing.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
stop_words = set(stopwords.words('english'))
|
| 8 |
+
|
| 9 |
+
def data_preprocessing(text: str) -> str:
|
| 10 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation and stopwords
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
text (str): input string for preprocessing
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
str: preprocessed string
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
text = text.lower()
|
| 20 |
+
text = re.sub('<.*?>', '', text) # Remove html tags
|
| 21 |
+
text = re.sub(r'@\w+', " ", text) # Remove usernames
|
| 22 |
+
text = re.sub(r'#\w+', " ", text) #Remove hash tags
|
| 23 |
+
text = re.sub(r'\d+', " ", text) #Remove digits
|
| 24 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 25 |
+
text = [word for word in text.split() if word not in stop_words]
|
| 26 |
+
text = ' '.join(text)
|
| 27 |
+
return text
|
| 28 |
+
|
| 29 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 30 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 31 |
+
|
| 32 |
+
def padding(review_int: list, seq_len: int) -> np.array:
|
| 33 |
+
"""Make left-sided padding for input list of tokens
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
review_int (list): input list of tokens
|
| 37 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
np.array: padded sequences
|
| 41 |
+
"""
|
| 42 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 43 |
+
for i, review in enumerate(review_int):
|
| 44 |
+
if len(review) <= seq_len:
|
| 45 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 46 |
+
new = zeros + review
|
| 47 |
+
else:
|
| 48 |
+
new = review[: seq_len]
|
| 49 |
+
features[i, :] = np.array(new)
|
| 50 |
+
|
| 51 |
+
return features
|
| 52 |
+
|
| 53 |
+
def preprocess_single_string(
|
| 54 |
+
input_string: str,
|
| 55 |
+
seq_len: int,
|
| 56 |
+
vocab_to_int: dict,
|
| 57 |
+
) -> torch.tensor:
|
| 58 |
+
"""Function for all preprocessing steps on a single string
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
input_string (str): input single string for preprocessing
|
| 62 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 63 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
list: preprocessed string
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 70 |
+
result_list = []
|
| 71 |
+
for word in preprocessed_string.split():
|
| 72 |
+
try:
|
| 73 |
+
result_list.append(vocab_to_int[word])
|
| 74 |
+
except KeyError as e:
|
| 75 |
+
print(f'{e}: not in dictionary!')
|
| 76 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 77 |
+
|
| 78 |
+
return torch.tensor(result_padded)
|
tfidf_vectorizer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a578ab761a1e2b767ae846945b2ee5c59d2d1b34a14d2fba922ddcc110c2883
|
| 3 |
+
size 6834168
|
vocab_to_int.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|