Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import transformers
|
| 5 |
+
import pickle
|
| 6 |
+
|
| 7 |
+
def load_model():
|
| 8 |
+
model_finetuned = transformers.AutoModel.from_pretrained(
|
| 9 |
+
"nghuyong/ernie-2.0-base-en",
|
| 10 |
+
output_attentions = False,
|
| 11 |
+
output_hidden_states = False
|
| 12 |
+
)
|
| 13 |
+
model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt'))
|
| 14 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en")
|
| 15 |
+
return model_finetuned, tokenizer
|
| 16 |
+
|
| 17 |
+
def preprocess_text(text_input, max_len, tokenizer):
|
| 18 |
+
input_tokens = tokenizer(
|
| 19 |
+
text_input,
|
| 20 |
+
return_tensors='pt',
|
| 21 |
+
padding=True,
|
| 22 |
+
max_length=max_len,
|
| 23 |
+
truncation = True
|
| 24 |
+
)
|
| 25 |
+
return input_tokens
|
| 26 |
+
|
| 27 |
+
def predict_sentiment(model, input_tokens):
|
| 28 |
+
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
|
| 29 |
+
output = model(**input_tokens).pooler_output.detach().numpy()
|
| 30 |
+
with open('LogReg_imdb_Ernie.pkl', 'rb') as file:
|
| 31 |
+
cls = pickle.load(file)
|
| 32 |
+
result = id2label[cls.predict(output)]
|
| 33 |
+
return result
|
| 34 |
+
|
| 35 |
+
st.title('Text sentiment analysis by ErnieModel')
|
| 36 |
+
|
| 37 |
+
max_len = st.slider('Maximum word length', 0, 500, 250)
|
| 38 |
+
|
| 39 |
+
text_input = st.text_input("Enter some text about movie")
|
| 40 |
+
model, tokenizer = load_model()
|
| 41 |
+
|
| 42 |
+
if text_input:
|
| 43 |
+
input_tokens = preprocess_text(text_input, max_len, tokenizer)
|
| 44 |
+
output = predict_sentiment(model, input_tokens)
|
| 45 |
+
st.write(output)
|
| 46 |
+
|