Upload app_connected.py
Browse files- app_connected.py +184 -0
app_connected.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pickle
|
| 7 |
+
from nltk.tokenize import RegexpTokenizer
|
| 8 |
+
from nltk.corpus import stopwords
|
| 9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 10 |
+
from sklearn.linear_model import LogisticRegression
|
| 11 |
+
import re
|
| 12 |
+
import string
|
| 13 |
+
from nltk.stem import WordNetLemmatizer
|
| 14 |
+
import time
|
| 15 |
+
import transformers
|
| 16 |
+
import json
|
| 17 |
+
|
| 18 |
+
from biLSTM1 import biLSTM
|
| 19 |
+
from lstm_preprocessing import (
|
| 20 |
+
data_preprocessing,
|
| 21 |
+
get_words_by_freq,
|
| 22 |
+
padding,
|
| 23 |
+
preprocess_single_string
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# 1-Lesha, 2-Lena, 3-Gal
|
| 29 |
+
# +++++++++++
|
| 30 |
+
# 1 -Lesha
|
| 31 |
+
|
| 32 |
+
# Load the saved model
|
| 33 |
+
with open('logistic_regression_model.pkl', 'rb') as file:
|
| 34 |
+
loaded_model_1 = pickle.load(file)
|
| 35 |
+
|
| 36 |
+
with open('tfidf_vectorizer.pkl', 'rb') as file:
|
| 37 |
+
vectorizer_1 = pickle.load(file)
|
| 38 |
+
|
| 39 |
+
# Load the stop words
|
| 40 |
+
stop_words = stopwords.words('english')
|
| 41 |
+
# Create a tokenizer
|
| 42 |
+
tokenizer = RegexpTokenizer(r'\w+')
|
| 43 |
+
|
| 44 |
+
def data_preprocessing(text: str) -> str:
|
| 45 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation and stopwords
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
text (str): input string for preprocessing
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
str: preprocessed string
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
text = text.lower()
|
| 55 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 56 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 57 |
+
lemmatizer = WordNetLemmatizer()
|
| 58 |
+
tokens = tokenizer.tokenize(text)
|
| 59 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens if not word.isdigit() and word not in stop_words]
|
| 60 |
+
return ' '.join(tokens)
|
| 61 |
+
|
| 62 |
+
# ++++
|
| 63 |
+
# Lena
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def load_model_l():
|
| 67 |
+
model_finetuned = transformers.AutoModel.from_pretrained(
|
| 68 |
+
"nghuyong/ernie-2.0-base-en",
|
| 69 |
+
output_attentions = False,
|
| 70 |
+
output_hidden_states = False
|
| 71 |
+
)
|
| 72 |
+
model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt', map_location=torch.device('cpu')))
|
| 73 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en")
|
| 74 |
+
return model_finetuned, tokenizer
|
| 75 |
+
|
| 76 |
+
def preprocess_text(text_input, max_len, tokenizer):
|
| 77 |
+
input_tokens = tokenizer(
|
| 78 |
+
text_input,
|
| 79 |
+
return_tensors='pt',
|
| 80 |
+
padding=True,
|
| 81 |
+
max_length=max_len,
|
| 82 |
+
truncation = True
|
| 83 |
+
)
|
| 84 |
+
return input_tokens
|
| 85 |
+
|
| 86 |
+
def predict_sentiment(model, input_tokens):
|
| 87 |
+
id2label = {0: "negative", 1: "positive"}
|
| 88 |
+
output = model(**input_tokens).pooler_output.detach().numpy()
|
| 89 |
+
with open('LogReg_imdb_Ernie.pkl', 'rb') as file:
|
| 90 |
+
cls = pickle.load(file)
|
| 91 |
+
result = id2label[int(cls.predict(output))]
|
| 92 |
+
return result
|
| 93 |
+
|
| 94 |
+
# ++++
|
| 95 |
+
# Gala
|
| 96 |
+
with open('/home/galkalin/nlp_project/vocab_to_int.json', 'r') as fp:
|
| 97 |
+
vocab_to_int = json.load(fp)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
VOCAB_SIZE = len(vocab_to_int)+1
|
| 101 |
+
EMBEDDING_DIM = 32
|
| 102 |
+
HIDDEN_DIM = 64
|
| 103 |
+
N_LAYERS = 3
|
| 104 |
+
SEQ_LEN = 128
|
| 105 |
+
|
| 106 |
+
def load_model_g():
|
| 107 |
+
model = biLSTM(
|
| 108 |
+
vocab_size=VOCAB_SIZE,
|
| 109 |
+
embedding_dim=EMBEDDING_DIM,
|
| 110 |
+
hidden_dim=HIDDEN_DIM,
|
| 111 |
+
n_layers=N_LAYERS
|
| 112 |
+
)
|
| 113 |
+
model.load_state_dict(torch.load('biLSTM_model_do_05_lr001_best.pt', map_location=torch.device('cpu')))
|
| 114 |
+
return model
|
| 115 |
+
|
| 116 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 117 |
+
|
| 118 |
+
def predict_sentence(text: str, model: nn.Module) -> str:
|
| 119 |
+
id2label = {0: "negative", 1: "positive"}
|
| 120 |
+
output = model.to(device)(preprocess_single_string(text, SEQ_LEN, vocab_to_int).unsqueeze(0).to(device))
|
| 121 |
+
pred = int(output.round().item())
|
| 122 |
+
result = id2label[pred]
|
| 123 |
+
return result
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
# ++++++
|
| 128 |
+
# Lesha
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# Create the Streamlit app
|
| 132 |
+
def main():
|
| 133 |
+
st.title('Sentiment Analysis App')
|
| 134 |
+
st.header('Classic ML, ErnieModel, bidirectional LSTM')
|
| 135 |
+
user_input = st.text_area('Please enter your review:')
|
| 136 |
+
st.write(user_input)
|
| 137 |
+
submit = st.button("Predict!")
|
| 138 |
+
col1, col2,col3 = st.columns(3)
|
| 139 |
+
if user_input is not None and submit:
|
| 140 |
+
with col1:
|
| 141 |
+
# Preprocess the user input
|
| 142 |
+
preprocessed_input_1 = data_preprocessing(user_input)
|
| 143 |
+
# Vectorize the preprocessed input
|
| 144 |
+
input_vector = vectorizer_1.transform([preprocessed_input_1])
|
| 145 |
+
start_time = time.time()
|
| 146 |
+
proba_1 = loaded_model_1.predict_proba(input_vector)[:, 1]
|
| 147 |
+
# Predict the sentiment using the loaded model
|
| 148 |
+
#prediction = loaded_model.predict(input_vector)[0]
|
| 149 |
+
prediction_1 = round(proba_1[0])
|
| 150 |
+
end_time = time.time()
|
| 151 |
+
# Display the predicted sentiment
|
| 152 |
+
if prediction_1 == 0:
|
| 153 |
+
st.write('The sentiment of your review is negative.')
|
| 154 |
+
st.write('Predicted probability:', (1 - round(proba_1[0], 2))*100, '%')
|
| 155 |
+
else:
|
| 156 |
+
st.write('The sentiment of your review is positive.')
|
| 157 |
+
st.write('Predicted probability:', (round(proba_1[0], 2))*100, '%')
|
| 158 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
| 159 |
+
# Lena
|
| 160 |
+
if user_input is not None and submit:
|
| 161 |
+
with col2:
|
| 162 |
+
model2, tokenizer = load_model_l()
|
| 163 |
+
start_time = time.time()
|
| 164 |
+
input_tokens = preprocess_text(user_input, 500, tokenizer)
|
| 165 |
+
output = predict_sentiment(model2, input_tokens)
|
| 166 |
+
end_time = time.time()
|
| 167 |
+
st.write('The sentiment of your review is', output)
|
| 168 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
| 169 |
+
# Gala
|
| 170 |
+
if user_input is not None and submit:
|
| 171 |
+
with col3:
|
| 172 |
+
model3 = load_model_g()
|
| 173 |
+
start_time = time.time()
|
| 174 |
+
output = predict_sentence(user_input,model3)
|
| 175 |
+
end_time = time.time()
|
| 176 |
+
st.write('The sentiment of your review is', output)
|
| 177 |
+
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
if __name__ == '__main__':
|
| 183 |
+
main()
|
| 184 |
+
|