File size: 8,845 Bytes
8e9e93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
from PyPDF2 import PdfReader
from transformers import AutoTokenizer, AutoModel
import torch
import faiss
import numpy as np
from groq import Groq
import os
# ------------- CONSTANTS ------------------------------------------------------
LEGAL_BERT_MODEL = "nlpaueb/legal-bert-base-uncased"
# Multiple legal documents - adjust PDFs here
DOCS = [
("bns_full.pdf", "Bharatiya Nyaya Sanhita 2023"),
("bns_ipc_mapping.pdf", "BNS-IPC Comparative Mapping"),
]
MAX_CHUNK_SIZE = 1000
OVERLAP = 200
TOP_K = 5 # Number of chunks to retrieve for context
LLAMA_MODEL = 'llama-3.3-70b-versatile'
# Groq API setup
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
groq_client = Groq(api_key=GROQ_API_KEY)
# ------------- LEGAL-BERT EMBEDDER CLASS ------------------------------------
class LegalBERTEmbedder:
def __init__(self, model_name=LEGAL_BERT_MODEL):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
def embed(self, texts):
all_embeddings = []
with torch.no_grad():
for text in texts:
inputs = self.tokenizer(text, return_tensors="pt",
truncation=True, max_length=512).to(self.device)
outputs = self.model(**inputs)
cls_embed = outputs.last_hidden_state[:, 0, :].cpu().numpy()
all_embeddings.append(cls_embed.flatten())
return np.vstack(all_embeddings)
# ------------- PDF PROCESSING FUNCTIONS ------------------------------------
def extract_text_from_pdf(pdf_path):
"""Extract text from PDF file"""
reader = PdfReader(pdf_path)
raw_text = ""
for page in reader.pages:
text = page.extract_text()
if text:
raw_text += text + "\n"
return raw_text
def chunk_text(text, max_chunk_size=MAX_CHUNK_SIZE, overlap=OVERLAP):
"""Split text into overlapping chunks"""
chunks = []
start = 0
length = len(text)
while start < length:
end = min(start + max_chunk_size, length)
chunk = text[start:end]
chunks.append(chunk)
start += max_chunk_size - overlap
return chunks
# ------------- FAISS INDEX FUNCTIONS ---------------------------------------
def build_faiss_index(embeddings):
"""Build FAISS index for similarity search"""
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim) # Inner product for cosine similarity
faiss.normalize_L2(embeddings)
index.add(embeddings)
return index
def query_faiss(index, query_embed, k=TOP_K):
"""Query FAISS index for top-k similar chunks"""
faiss.normalize_L2(query_embed)
distances, indices = index.search(query_embed, k)
return distances, indices
# ------------- LOAD AND PROCESS ALL DOCUMENTS ------------------------------
print("Loading and processing multiple legal documents...")
embedder = LegalBERTEmbedder()
all_chunks = []
metadata = [] # Store (act_label, original_chunk_text) for reference
print("Extracting and chunking text from all PDFs...")
for pdf_path, act_label in DOCS:
try:
raw_text = extract_text_from_pdf(pdf_path)
print(f"Extracted {len(raw_text)} characters from {act_label}")
chunks = chunk_text(raw_text)
print(f"Created {len(chunks)} chunks from {act_label}")
# Prefix each chunk with act label for better context
labeled_chunks = [f"[{act_label}] {chunk}" for chunk in chunks]
all_chunks.extend(labeled_chunks)
metadata.extend([(act_label, chunk) for chunk in chunks])
except Exception as e:
print(f"Error processing {pdf_path}: {str(e)}")
continue
print(f"Total chunks created: {len(all_chunks)}")
print("Embedding all text chunks with Legal-BERT...")
chunk_embeddings = embedder.embed(all_chunks)
print("Embeddings created successfully")
print("Building FAISS index...")
faiss_index = build_faiss_index(chunk_embeddings)
print("FAISS index built successfully")
# ------------- PROMPT TEMPLATES -------------------------------------------
SYSTEM_PROMPT = """You are a senior Indian legal expert specializing in the Bharatiya Nyaya Sanhita 2023 (BNS) and its correspondence with the Indian Penal Code 1860 (IPC).
When answering any question, you MUST use this exact format:
CONTEXT/SITUATION:
[Provide detailed explanation of the legal context and situation]
BNS SECTIONS:
[List the specific BNS sections and subsections that apply, with proper citations]
IPC SECTIONS (if applicable):
[List the corresponding IPC sections based on mappings, with proper citations]
SUMMARY:
[Provide a clear one-sentence summary highlighting the applicable BNS and IPC sections in **bold** format]
Always cite specific sections when available and ensure your response covers relevant BNS provisions and mapped IPC equivalents."""
def build_user_prompt(context, question):
"""Build the user prompt with context and question"""
return f"""Based on the following relevant extracts from BNS and IPC legislation:
{context}
Question: {question}
Please provide a comprehensive legal answer following the exact format specified in the system instructions."""
# ------------- MAIN QUERY FUNCTION ----------------------------------------
def answer_query(user_query):
"""Main function to answer user queries"""
try:
# Embed the user query
query_embed = embedder.embed([user_query])
# Retrieve top-k similar chunks from FAISS
_, indices = query_faiss(faiss_index, query_embed, k=TOP_K)
retrieved_chunks = [all_chunks[i] for i in indices[0]]
# Prepare context for Llama 3
context = "\n\n".join(retrieved_chunks)
# Create chat completion using Groq API with Llama 3
chat_completion = groq_client.chat.completions.create(
messages=[
{
"role": "system",
"content": SYSTEM_PROMPT
},
{
"role": "user",
"content": build_user_prompt(context, user_query)
}
],
model=LLAMA_MODEL,
temperature=0.1,
max_tokens=1024
)
return chat_completion.choices[0].message.content.strip()
except Exception as e:
return f"Error processing query: {str(e)}\n\nPlease check your Groq API key and internet connection."
# ------------- GRADIO INTERFACE -------------------------------------------
with gr.Blocks(title="IPC & BNS Legal Assistant") as demo:
gr.Markdown("""
# ποΈ IPC & BNS Legal Assistant
**Comprehensive Legal Q&A System covering:**
- Bharatiya Nyaya Sanhita 2023 (BNS)
- Corresponding Indian Penal Code 1860 (IPC) sections
Ask any question about Indian criminal legislation and get structured legal answers with proper citations.
""")
with gr.Row():
with gr.Column():
query_input = gr.Textbox(
label="πΌ Enter your legal query",
placeholder="e.g., What are the penalties for murder under BNS? What is the IPC equivalent for theft?",
lines=4,
max_lines=8
)
with gr.Row():
submit_btn = gr.Button("π Get Legal Answer", variant="primary", scale=2)
clear_btn = gr.Button("ποΈ Clear", scale=1)
with gr.Row():
answer_output = gr.Markdown(
label="π Legal Analysis",
value="*Submit your question to get a structured legal analysis...*"
)
# Event handlers
submit_btn.click(answer_query, inputs=query_input, outputs=answer_output)
query_input.submit(answer_query, inputs=query_input, outputs=answer_output)
clear_btn.click(lambda: ("", "*Submit your question to get a structured legal analysis...*"),
outputs=[query_input, answer_output])
# Add examples
gr.Examples(
examples=[
["What are the penalties for murder under BNS?"],
["What is the IPC equivalent for BNS Section 103?"],
["What constitutes theft according to BNS legislation?"],
["How are punishments defined for assault in BNS?"],
["What are the legal provisions for robbery under IPC and BNS?"]
],
inputs=query_input,
outputs=answer_output,
fn=answer_query,
cache_examples=False
)
# Launch the interface
if __name__ == "__main__":
demo.launch(
share=False,
debug=True,
show_error=True
) |