Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,28 +11,28 @@ from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc, cl
|
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import seaborn as sns
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
st.title('
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
uploaded_file = st.file_uploader("
|
| 19 |
|
| 20 |
if uploaded_file is not None:
|
| 21 |
df = pd.read_csv(uploaded_file)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
X = df.drop(columns=['Target_goal'])
|
| 25 |
y = df['Target_goal']
|
| 26 |
|
| 27 |
-
#
|
| 28 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
scaler = StandardScaler()
|
| 32 |
X_train = scaler.fit_transform(X_train)
|
| 33 |
X_test = scaler.transform(X_test)
|
| 34 |
|
| 35 |
-
#
|
| 36 |
estimators = [
|
| 37 |
('lr', LogisticRegression()),
|
| 38 |
('dt', DecisionTreeClassifier()),
|
|
@@ -41,7 +41,7 @@ if uploaded_file is not None:
|
|
| 41 |
('svc', SVC(probability=True))
|
| 42 |
]
|
| 43 |
|
| 44 |
-
#
|
| 45 |
stacking_clf = StackingClassifier(
|
| 46 |
estimators=estimators,
|
| 47 |
final_estimator=LogisticRegression()
|
|
@@ -50,15 +50,15 @@ if uploaded_file is not None:
|
|
| 50 |
y_pred_stack = stacking_clf.predict(X_test)
|
| 51 |
y_pred_stack_proba = stacking_clf.predict_proba(X_test)[:, 1]
|
| 52 |
|
| 53 |
-
#
|
| 54 |
accuracy_stack = accuracy_score(y_test, y_pred_stack)
|
| 55 |
-
st.write(f'
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
st.write("
|
| 59 |
st.text(classification_report(y_test, y_pred_stack))
|
| 60 |
|
| 61 |
-
#
|
| 62 |
voting_clf = VotingClassifier(
|
| 63 |
estimators=estimators,
|
| 64 |
voting='soft'
|
|
@@ -67,34 +67,34 @@ if uploaded_file is not None:
|
|
| 67 |
y_pred_vote = voting_clf.predict(X_test)
|
| 68 |
y_pred_vote_proba = voting_clf.predict_proba(X_test)[:, 1]
|
| 69 |
|
| 70 |
-
#
|
| 71 |
accuracy_vote = accuracy_score(y_test, y_pred_vote)
|
| 72 |
-
st.write(f'
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
st.write("
|
| 76 |
st.text(classification_report(y_test, y_pred_vote))
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
st.write("
|
| 80 |
conf_matrix_stack = confusion_matrix(y_test, y_pred_stack)
|
| 81 |
fig, ax = plt.subplots()
|
| 82 |
sns.heatmap(conf_matrix_stack, annot=True, fmt='d', cmap='Blues', ax=ax)
|
| 83 |
-
ax.set_title('
|
| 84 |
st.pyplot(fig)
|
| 85 |
|
| 86 |
-
st.write("
|
| 87 |
conf_matrix_vote = confusion_matrix(y_test, y_pred_vote)
|
| 88 |
fig, ax = plt.subplots()
|
| 89 |
sns.heatmap(conf_matrix_vote, annot=True, fmt='d', cmap='Blues', ax=ax)
|
| 90 |
-
ax.set_title('
|
| 91 |
st.pyplot(fig)
|
| 92 |
|
| 93 |
-
# ROC
|
| 94 |
-
#
|
| 95 |
-
y_test_binary = (y_test == 2).astype(int) #
|
| 96 |
|
| 97 |
-
#
|
| 98 |
fpr_stack, tpr_stack, _ = roc_curve(y_test_binary, y_pred_stack_proba)
|
| 99 |
roc_auc_stack = auc(fpr_stack, tpr_stack)
|
| 100 |
|
|
@@ -102,13 +102,13 @@ if uploaded_file is not None:
|
|
| 102 |
roc_auc_vote = auc(fpr_vote, tpr_vote)
|
| 103 |
|
| 104 |
fig, ax = plt.subplots()
|
| 105 |
-
ax.plot(fpr_stack, tpr_stack, color='blue', lw=2, label='
|
| 106 |
-
ax.plot(fpr_vote, tpr_vote, color='red', lw=2, label='
|
| 107 |
ax.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
|
| 108 |
ax.set_xlim([0.0, 1.0])
|
| 109 |
ax.set_ylim([0.0, 1.05])
|
| 110 |
-
ax.set_xlabel('
|
| 111 |
-
ax.set_ylabel('
|
| 112 |
-
ax.set_title('ROC
|
| 113 |
ax.legend(loc="lower right")
|
| 114 |
st.pyplot(fig)
|
|
|
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import seaborn as sns
|
| 13 |
|
| 14 |
+
# Set Streamlit interface title
|
| 15 |
+
st.title('Classification Model Comparison: Stacking and Voting Classifiers')
|
| 16 |
|
| 17 |
+
# Allow user to upload data
|
| 18 |
+
uploaded_file = st.file_uploader("Please upload a CSV file", type=["csv"])
|
| 19 |
|
| 20 |
if uploaded_file is not None:
|
| 21 |
df = pd.read_csv(uploaded_file)
|
| 22 |
|
| 23 |
+
# Define features and target variable
|
| 24 |
X = df.drop(columns=['Target_goal'])
|
| 25 |
y = df['Target_goal']
|
| 26 |
|
| 27 |
+
# Split dataset
|
| 28 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 29 |
|
| 30 |
+
# Standardize data
|
| 31 |
scaler = StandardScaler()
|
| 32 |
X_train = scaler.fit_transform(X_train)
|
| 33 |
X_test = scaler.transform(X_test)
|
| 34 |
|
| 35 |
+
# Define base models
|
| 36 |
estimators = [
|
| 37 |
('lr', LogisticRegression()),
|
| 38 |
('dt', DecisionTreeClassifier()),
|
|
|
|
| 41 |
('svc', SVC(probability=True))
|
| 42 |
]
|
| 43 |
|
| 44 |
+
# Stacking classifier
|
| 45 |
stacking_clf = StackingClassifier(
|
| 46 |
estimators=estimators,
|
| 47 |
final_estimator=LogisticRegression()
|
|
|
|
| 50 |
y_pred_stack = stacking_clf.predict(X_test)
|
| 51 |
y_pred_stack_proba = stacking_clf.predict_proba(X_test)[:, 1]
|
| 52 |
|
| 53 |
+
# Stacking classifier accuracy
|
| 54 |
accuracy_stack = accuracy_score(y_test, y_pred_stack)
|
| 55 |
+
st.write(f'Stacking Classifier Accuracy: {accuracy_stack:.2f}')
|
| 56 |
|
| 57 |
+
# Stacking classifier classification report
|
| 58 |
+
st.write("Stacking Classifier Classification Report:")
|
| 59 |
st.text(classification_report(y_test, y_pred_stack))
|
| 60 |
|
| 61 |
+
# Voting classifier
|
| 62 |
voting_clf = VotingClassifier(
|
| 63 |
estimators=estimators,
|
| 64 |
voting='soft'
|
|
|
|
| 67 |
y_pred_vote = voting_clf.predict(X_test)
|
| 68 |
y_pred_vote_proba = voting_clf.predict_proba(X_test)[:, 1]
|
| 69 |
|
| 70 |
+
# Voting classifier accuracy
|
| 71 |
accuracy_vote = accuracy_score(y_test, y_pred_vote)
|
| 72 |
+
st.write(f'Voting Classifier Accuracy: {accuracy_vote:.2f}')
|
| 73 |
|
| 74 |
+
# Voting classifier classification report
|
| 75 |
+
st.write("Voting Classifier Classification Report:")
|
| 76 |
st.text(classification_report(y_test, y_pred_vote))
|
| 77 |
|
| 78 |
+
# Confusion matrix visualization
|
| 79 |
+
st.write("Stacking Classifier Confusion Matrix:")
|
| 80 |
conf_matrix_stack = confusion_matrix(y_test, y_pred_stack)
|
| 81 |
fig, ax = plt.subplots()
|
| 82 |
sns.heatmap(conf_matrix_stack, annot=True, fmt='d', cmap='Blues', ax=ax)
|
| 83 |
+
ax.set_title('Stacking Classifier Confusion Matrix')
|
| 84 |
st.pyplot(fig)
|
| 85 |
|
| 86 |
+
st.write("Voting Classifier Confusion Matrix:")
|
| 87 |
conf_matrix_vote = confusion_matrix(y_test, y_pred_vote)
|
| 88 |
fig, ax = plt.subplots()
|
| 89 |
sns.heatmap(conf_matrix_vote, annot=True, fmt='d', cmap='Blues', ax=ax)
|
| 90 |
+
ax.set_title('Voting Classifier Confusion Matrix')
|
| 91 |
st.pyplot(fig)
|
| 92 |
|
| 93 |
+
# ROC curve
|
| 94 |
+
# Convert y_test labels to 0 and 1
|
| 95 |
+
y_test_binary = (y_test == 2).astype(int) # Assume 2 is the positive label
|
| 96 |
|
| 97 |
+
# Calculate ROC curve
|
| 98 |
fpr_stack, tpr_stack, _ = roc_curve(y_test_binary, y_pred_stack_proba)
|
| 99 |
roc_auc_stack = auc(fpr_stack, tpr_stack)
|
| 100 |
|
|
|
|
| 102 |
roc_auc_vote = auc(fpr_vote, tpr_vote)
|
| 103 |
|
| 104 |
fig, ax = plt.subplots()
|
| 105 |
+
ax.plot(fpr_stack, tpr_stack, color='blue', lw=2, label='Stacking Classifier (AUC = %0.2f)' % roc_auc_stack)
|
| 106 |
+
ax.plot(fpr_vote, tpr_vote, color='red', lw=2, label='Voting Classifier (AUC = %0.2f)' % roc_auc_vote)
|
| 107 |
ax.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
|
| 108 |
ax.set_xlim([0.0, 1.0])
|
| 109 |
ax.set_ylim([0.0, 1.05])
|
| 110 |
+
ax.set_xlabel('False Positive Rate')
|
| 111 |
+
ax.set_ylabel('True Positive Rate')
|
| 112 |
+
ax.set_title('ROC Curve')
|
| 113 |
ax.legend(loc="lower right")
|
| 114 |
st.pyplot(fig)
|