Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,72 +9,187 @@ from basicsr.utils.download_util import load_file_from_url
|
|
| 9 |
from realesrgan import RealESRGANer
|
| 10 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
last_file = None
|
| 14 |
img_mode = "RGBA"
|
| 15 |
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
return
|
| 22 |
|
| 23 |
-
#
|
| 24 |
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
|
| 25 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 26 |
netscale = 4
|
| 27 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
|
|
|
| 28 |
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
|
| 29 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 30 |
netscale = 4
|
| 31 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
|
|
|
| 32 |
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
|
| 33 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
| 34 |
netscale = 4
|
| 35 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
|
|
|
| 36 |
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
|
| 37 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
| 38 |
netscale = 2
|
| 39 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
|
|
|
| 40 |
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
|
| 41 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
| 42 |
netscale = 4
|
|
|
|
| 43 |
file_url = [
|
| 44 |
-
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-
|
| 45 |
-
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
| 46 |
]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
upsampler = RealESRGANer(
|
| 66 |
scale=netscale,
|
| 67 |
model_path=model_path,
|
| 68 |
dni_weight=dni_weight,
|
| 69 |
model=model,
|
| 70 |
-
tile=
|
| 71 |
tile_pad=10,
|
| 72 |
pre_pad=10,
|
| 73 |
-
half=
|
| 74 |
-
gpu_id=
|
| 75 |
)
|
| 76 |
|
| 77 |
-
#
|
|
|
|
| 78 |
if face_enhance:
|
| 79 |
from gfpgan import GFPGANer
|
| 80 |
face_enhancer = GFPGANer(
|
|
@@ -82,140 +197,105 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
| 82 |
upscale=outscale,
|
| 83 |
arch='clean',
|
| 84 |
channel_multiplier=2,
|
| 85 |
-
bg_upsampler=upsampler
|
|
|
|
| 86 |
|
| 87 |
-
# Convert
|
| 88 |
cv_img = numpy.array(img)
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
#
|
| 92 |
try:
|
| 93 |
-
if
|
| 94 |
-
_, _, output = face_enhancer.enhance(
|
| 95 |
else:
|
| 96 |
-
output, _ = upsampler.enhance(
|
| 97 |
except RuntimeError as error:
|
| 98 |
print('Error', error)
|
| 99 |
-
print('If you
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
else:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
extension = 'png'
|
| 104 |
-
else:
|
| 105 |
-
extension = 'jpg'
|
| 106 |
|
| 107 |
-
|
|
|
|
| 108 |
cv2.imwrite(out_filename, output)
|
| 109 |
global last_file
|
| 110 |
last_file = out_filename
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def rnd_string(x):
|
| 115 |
-
"""Returns a string of 'x' random characters
|
| 116 |
-
"""
|
| 117 |
-
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
| 118 |
-
result = "".join((random.choice(characters)) for i in range(x))
|
| 119 |
-
return result
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def reset():
|
| 123 |
-
"""Resets the Image components of the Gradio interface and deletes
|
| 124 |
-
the last processed image
|
| 125 |
-
"""
|
| 126 |
-
global last_file
|
| 127 |
-
if last_file:
|
| 128 |
-
print(f"Deleting {last_file} ...")
|
| 129 |
-
os.remove(last_file)
|
| 130 |
-
last_file = None
|
| 131 |
-
return gr.update(value=None), gr.update(value=None)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
def has_transparency(img):
|
| 135 |
-
"""This function works by first checking to see if a "transparency" property is defined
|
| 136 |
-
in the image's info -- if so, we return "True". Then, if the image is using indexed colors
|
| 137 |
-
(such as in GIFs), it gets the index of the transparent color in the palette
|
| 138 |
-
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
|
| 139 |
-
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
|
| 140 |
-
it, but it double-checks by getting the minimum and maximum values of every color channel
|
| 141 |
-
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
|
| 142 |
-
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
|
| 143 |
-
"""
|
| 144 |
-
if img.info.get("transparency", None) is not None:
|
| 145 |
-
return True
|
| 146 |
-
if img.mode == "P":
|
| 147 |
-
transparent = img.info.get("transparency", -1)
|
| 148 |
-
for _, index in img.getcolors():
|
| 149 |
-
if index == transparent:
|
| 150 |
-
return True
|
| 151 |
-
elif img.mode == "RGBA":
|
| 152 |
-
extrema = img.getextrema()
|
| 153 |
-
if extrema[3][0] < 255:
|
| 154 |
-
return True
|
| 155 |
-
return False
|
| 156 |
|
| 157 |
-
|
| 158 |
-
def image_properties(img):
|
| 159 |
-
"""Returns the dimensions (width and height) and color mode of the input image and
|
| 160 |
-
also sets the global img_mode variable to be used by the realesrgan function
|
| 161 |
-
"""
|
| 162 |
-
global img_mode
|
| 163 |
-
if img:
|
| 164 |
-
if has_transparency(img):
|
| 165 |
-
img_mode = "RGBA"
|
| 166 |
-
else:
|
| 167 |
-
img_mode = "RGB"
|
| 168 |
-
properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
| 169 |
-
return properties
|
| 170 |
|
| 171 |
|
|
|
|
|
|
|
|
|
|
| 172 |
def main():
|
| 173 |
-
# Gradio Interface
|
| 174 |
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
|
|
|
|
| 175 |
|
| 176 |
-
gr.
|
| 177 |
-
""" Image Upscaler
|
| 178 |
-
"""
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
with gr.Accordion("Upscaling option"):
|
| 182 |
with gr.Row():
|
| 183 |
-
model_name = gr.Dropdown(
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
)
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
with gr.Row():
|
| 195 |
with gr.Group():
|
| 196 |
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
|
| 197 |
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
|
| 198 |
output_image = gr.Image(label="Output Image", image_mode="RGBA")
|
|
|
|
| 199 |
with gr.Row():
|
| 200 |
reset_btn = gr.Button("Remove images")
|
| 201 |
restore_btn = gr.Button("Upscale")
|
| 202 |
|
| 203 |
# Event listeners:
|
| 204 |
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
|
| 205 |
-
|
| 206 |
-
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
| 207 |
-
outputs=output_image)
|
| 208 |
-
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
| 209 |
-
# reset_btn.click(None, inputs=[], outputs=[input_image], _js="() => (null)\n")
|
| 210 |
-
# Undocumented method to clear a component's value using Javascript
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
| 215 |
)
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
demo.launch()
|
| 218 |
|
| 219 |
|
| 220 |
if __name__ == "__main__":
|
| 221 |
-
main()
|
|
|
|
| 9 |
from realesrgan import RealESRGANer
|
| 10 |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
| 11 |
|
| 12 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 13 |
+
# Globals
|
| 14 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 15 |
last_file = None
|
| 16 |
img_mode = "RGBA"
|
| 17 |
|
| 18 |
|
| 19 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 20 |
+
# Utilities
|
| 21 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 22 |
+
def rnd_string(x: int) -> str:
|
| 23 |
+
"""Returns a string of 'x' random characters."""
|
| 24 |
+
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
| 25 |
+
result = "".join((random.choice(characters)) for _ in range(x))
|
| 26 |
+
return result
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def reset():
|
| 30 |
+
"""Resets the Image components and deletes the last processed image."""
|
| 31 |
+
global last_file
|
| 32 |
+
if last_file:
|
| 33 |
+
try:
|
| 34 |
+
print(f"Deleting {last_file} ...")
|
| 35 |
+
os.remove(last_file)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print("Delete error:", e)
|
| 38 |
+
last_file = None
|
| 39 |
+
return gr.update(value=None), gr.update(value=None)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def has_transparency(img):
|
| 43 |
"""
|
| 44 |
+
Check for transparency in a PIL image.
|
| 45 |
+
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
|
| 46 |
+
"""
|
| 47 |
+
if img.info.get("transparency", None) is not None:
|
| 48 |
+
return True
|
| 49 |
+
if img.mode == "P":
|
| 50 |
+
transparent = img.info.get("transparency", -1)
|
| 51 |
+
for _, index in img.getcolors():
|
| 52 |
+
if index == transparent:
|
| 53 |
+
return True
|
| 54 |
+
elif img.mode == "RGBA":
|
| 55 |
+
extrema = img.getextrema()
|
| 56 |
+
if extrema[3][0] < 255:
|
| 57 |
+
return True
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def image_properties(img):
|
| 62 |
+
"""Return resolution & color mode of the input image; set global img_mode."""
|
| 63 |
+
global img_mode
|
| 64 |
+
if img:
|
| 65 |
+
if has_transparency(img):
|
| 66 |
+
img_mode = "RGBA"
|
| 67 |
+
else:
|
| 68 |
+
img_mode = "RGB"
|
| 69 |
+
properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
| 70 |
+
return properties
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def model_tip_text(model_name: str) -> str:
|
| 74 |
+
"""Return human-friendly guidance for the chosen model."""
|
| 75 |
+
tips = {
|
| 76 |
+
"RealESRGAN_x4plus": (
|
| 77 |
+
"**RealESRGAN_x4plus (4Γ)** β Best for photoreal images (portraits, landscapes). "
|
| 78 |
+
"Balanced detail recovery. Good default for Flux realism."
|
| 79 |
+
),
|
| 80 |
+
"RealESRNet_x4plus": (
|
| 81 |
+
"**RealESRNet_x4plus (4Γ)** β Softer but great on noisy/compressed sources "
|
| 82 |
+
"(old JPEGs, screenshots)."
|
| 83 |
+
),
|
| 84 |
+
"RealESRGAN_x4plus_anime_6B": (
|
| 85 |
+
"**RealESRGAN_x4plus_anime_6B (4Γ)** β For anime/illustrations/line art only. "
|
| 86 |
+
"Not recommended for real-life photos."
|
| 87 |
+
),
|
| 88 |
+
"RealESRGAN_x2plus": (
|
| 89 |
+
"**RealESRGAN_x2plus (2Γ)** β Faster, lighter 2Γ cleanup when you don't need 4Γ."
|
| 90 |
+
),
|
| 91 |
+
"realesr-general-x4v3": (
|
| 92 |
+
"**realesr-general-x4v3 (4Γ)** β Versatile mixed-content model with adjustable denoise. "
|
| 93 |
+
"**Denoise Strength** slider only affects this model (blends with the WDN variant). "
|
| 94 |
+
"Try 0.3β0.5 for slightly cleaner, sharper results."
|
| 95 |
+
),
|
| 96 |
+
}
|
| 97 |
+
return tips.get(model_name, "")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 101 |
+
# Core upscaling
|
| 102 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 103 |
+
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
| 104 |
+
"""Real-ESRGAN function to restore (and upscale) images with robust defaults."""
|
| 105 |
+
if img is None:
|
| 106 |
return
|
| 107 |
|
| 108 |
+
# ----- Select backbone + weights -----
|
| 109 |
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
|
| 110 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 111 |
netscale = 4
|
| 112 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
| 113 |
+
|
| 114 |
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
|
| 115 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 116 |
netscale = 4
|
| 117 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
| 118 |
+
|
| 119 |
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
|
| 120 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
| 121 |
netscale = 4
|
| 122 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
| 123 |
+
|
| 124 |
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
|
| 125 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
| 126 |
netscale = 2
|
| 127 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
| 128 |
+
|
| 129 |
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
|
| 130 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
| 131 |
netscale = 4
|
| 132 |
+
# We'll ensure BOTH base and WDN weights exist; order matters for DNI.
|
| 133 |
file_url = [
|
| 134 |
+
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
|
| 135 |
+
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth'
|
| 136 |
]
|
| 137 |
|
| 138 |
+
else:
|
| 139 |
+
raise ValueError(f"Unknown model: {model_name}")
|
| 140 |
+
|
| 141 |
+
# ----- Ensure weights are on disk -----
|
| 142 |
+
# For the general-x4v3 case we download both; for others single file is fine.
|
| 143 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 144 |
+
weights_dir = os.path.join(ROOT_DIR, 'weights')
|
| 145 |
+
os.makedirs(weights_dir, exist_ok=True)
|
| 146 |
+
|
| 147 |
+
# Track model paths
|
| 148 |
+
local_paths = []
|
| 149 |
+
for url in file_url:
|
| 150 |
+
fname = os.path.basename(url)
|
| 151 |
+
local_path = os.path.join(weights_dir, fname)
|
| 152 |
+
if not os.path.isfile(local_path):
|
| 153 |
+
local_path = load_file_from_url(url=url, model_dir=weights_dir, progress=True)
|
| 154 |
+
local_paths.append(local_path)
|
| 155 |
+
|
| 156 |
+
# Default path(s)
|
| 157 |
+
if model_name == 'realesr-general-x4v3':
|
| 158 |
+
# Order: [base, wdn] then set DNI weights accordingly
|
| 159 |
+
base_path = os.path.join(weights_dir, 'realesr-general-x4v3.pth')
|
| 160 |
+
wdn_path = os.path.join(weights_dir, 'realesr-general-wdn-x4v3.pth')
|
| 161 |
+
model_path = [base_path, wdn_path]
|
| 162 |
+
denoise_strength = float(denoise_strength)
|
| 163 |
+
# Weight for WDN equals denoise_strength (cleaner); base gets the remainder
|
| 164 |
+
dni_weight = [1.0 - denoise_strength, denoise_strength]
|
| 165 |
+
else:
|
| 166 |
+
model_path = os.path.join(weights_dir, f"{model_name}.pth")
|
| 167 |
+
dni_weight = None
|
| 168 |
+
|
| 169 |
+
# ----- CUDA / precision / tiling -----
|
| 170 |
+
# Be defensive: cv2.cuda may not exist in CPU-only builds.
|
| 171 |
+
use_cuda = False
|
| 172 |
+
try:
|
| 173 |
+
use_cuda = hasattr(cv2, "cuda") and cv2.cuda.getCudaEnabledDeviceCount() > 0
|
| 174 |
+
except Exception:
|
| 175 |
+
use_cuda = False
|
| 176 |
+
|
| 177 |
+
gpu_id = 0 if use_cuda else None
|
| 178 |
+
|
| 179 |
upsampler = RealESRGANer(
|
| 180 |
scale=netscale,
|
| 181 |
model_path=model_path,
|
| 182 |
dni_weight=dni_weight,
|
| 183 |
model=model,
|
| 184 |
+
tile=256, # Safe VRAM default; increase if you have headroom
|
| 185 |
tile_pad=10,
|
| 186 |
pre_pad=10,
|
| 187 |
+
half=bool(use_cuda), # FP16 on GPU
|
| 188 |
+
gpu_id=gpu_id
|
| 189 |
)
|
| 190 |
|
| 191 |
+
# ----- Optional face enhancement -----
|
| 192 |
+
face_enhancer = None
|
| 193 |
if face_enhance:
|
| 194 |
from gfpgan import GFPGANer
|
| 195 |
face_enhancer = GFPGANer(
|
|
|
|
| 197 |
upscale=outscale,
|
| 198 |
arch='clean',
|
| 199 |
channel_multiplier=2,
|
| 200 |
+
bg_upsampler=upsampler
|
| 201 |
+
)
|
| 202 |
|
| 203 |
+
# ----- Convert PIL -> cv2 (handle RGB/RGBA) -----
|
| 204 |
cv_img = numpy.array(img)
|
| 205 |
+
if cv_img.ndim == 3 and cv_img.shape[2] == 4:
|
| 206 |
+
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
| 207 |
+
else:
|
| 208 |
+
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
|
| 209 |
|
| 210 |
+
# ----- Enhance -----
|
| 211 |
try:
|
| 212 |
+
if face_enhancer:
|
| 213 |
+
_, _, output = face_enhancer.enhance(cv_img, has_aligned=False, only_center_face=False, paste_back=True)
|
| 214 |
else:
|
| 215 |
+
output, _ = upsampler.enhance(cv_img, outscale=int(outscale))
|
| 216 |
except RuntimeError as error:
|
| 217 |
print('Error', error)
|
| 218 |
+
print('Tip: If you hit CUDA OOM, try a smaller tile size (e.g., 128).')
|
| 219 |
+
return None
|
| 220 |
+
|
| 221 |
+
# ----- cv2 -> RGBA/RGB for Gradio, also save -----
|
| 222 |
+
if output.ndim == 3 and output.shape[2] == 4:
|
| 223 |
+
display_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
|
| 224 |
+
extension = 'png'
|
| 225 |
else:
|
| 226 |
+
display_img = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
| 227 |
+
extension = 'jpg'
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
out_filename = f"output_{rnd_string(8)}.{extension}"
|
| 230 |
+
try:
|
| 231 |
cv2.imwrite(out_filename, output)
|
| 232 |
global last_file
|
| 233 |
last_file = out_filename
|
| 234 |
+
except Exception as e:
|
| 235 |
+
print("Save error:", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
return display_img # ndarray so Gradio displays immediately
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
|
| 240 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 241 |
+
# UI
|
| 242 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 243 |
def main():
|
|
|
|
| 244 |
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
|
| 245 |
+
gr.Markdown("## Image Upscaler")
|
| 246 |
|
| 247 |
+
with gr.Accordion("Upscaling options", open=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
with gr.Row():
|
| 249 |
+
model_name = gr.Dropdown(
|
| 250 |
+
label="Upscaler model",
|
| 251 |
+
choices=[
|
| 252 |
+
"RealESRGAN_x4plus",
|
| 253 |
+
"RealESRNet_x4plus",
|
| 254 |
+
"RealESRGAN_x4plus_anime_6B",
|
| 255 |
+
"RealESRGAN_x2plus",
|
| 256 |
+
"realesr-general-x4v3",
|
| 257 |
+
],
|
| 258 |
+
value="RealESRGAN_x4plus", # photoreal default
|
| 259 |
+
show_label=True
|
| 260 |
+
)
|
| 261 |
+
denoise_strength = gr.Slider(
|
| 262 |
+
label="Denoise Strength (only for realesr-general-x4v3)",
|
| 263 |
+
minimum=0, maximum=1, step=0.1, value=0.5
|
| 264 |
)
|
| 265 |
+
outscale = gr.Slider(
|
| 266 |
+
label="Resolution upscale",
|
| 267 |
+
minimum=1, maximum=6, step=1, value=4, show_label=True
|
| 268 |
+
)
|
| 269 |
+
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)", value=False)
|
| 270 |
+
|
| 271 |
+
# Model tips panel (auto-updates)
|
| 272 |
+
model_tips = gr.Markdown(model_tip_text("RealESRGAN_x4plus"))
|
| 273 |
+
|
| 274 |
with gr.Row():
|
| 275 |
with gr.Group():
|
| 276 |
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
|
| 277 |
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
|
| 278 |
output_image = gr.Image(label="Output Image", image_mode="RGBA")
|
| 279 |
+
|
| 280 |
with gr.Row():
|
| 281 |
reset_btn = gr.Button("Remove images")
|
| 282 |
restore_btn = gr.Button("Upscale")
|
| 283 |
|
| 284 |
# Event listeners:
|
| 285 |
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
|
| 286 |
+
model_name.change(fn=model_tip_text, inputs=model_name, outputs=model_tips)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
+
restore_btn.click(
|
| 289 |
+
fn=realesrgan,
|
| 290 |
+
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
| 291 |
+
outputs=output_image
|
| 292 |
)
|
| 293 |
+
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
| 294 |
+
|
| 295 |
+
gr.Markdown("") # spacer
|
| 296 |
|
| 297 |
demo.launch()
|
| 298 |
|
| 299 |
|
| 300 |
if __name__ == "__main__":
|
| 301 |
+
main()
|