Spaces:
Paused
Paused
Upload app.py
Browse files
app.py
CHANGED
|
@@ -17,6 +17,7 @@ import torch
|
|
| 17 |
import faiss
|
| 18 |
import numpy as np
|
| 19 |
import gradio as gr
|
|
|
|
| 20 |
# from google.colab import drive
|
| 21 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 22 |
from sentence_transformers import SentenceTransformer
|
|
@@ -39,7 +40,10 @@ whisper_model = whisper.load_model("base")
|
|
| 39 |
|
| 40 |
load_dotenv()
|
| 41 |
|
|
|
|
|
|
|
| 42 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 43 |
login(token=hf_token)
|
| 44 |
|
| 45 |
|
|
@@ -50,7 +54,7 @@ login(token=hf_token)
|
|
| 50 |
# π§ Configuration
|
| 51 |
# -------------------------------
|
| 52 |
base_model_path = "google/gemma-2-9b-it"
|
| 53 |
-
peft_model_path = "Jaamie/gemma-mental-health-qlora"
|
| 54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
|
| 56 |
embedding_model_bge = "BAAI/bge-base-en-v1.5"
|
|
@@ -205,6 +209,30 @@ def extract_diagnosis(response_text: str) -> str:
|
|
| 205 |
return line.split(":")[-1].strip()
|
| 206 |
return "Unknown"
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
def process_query(user_query, input_type="text"):
|
| 209 |
# Embed the query
|
| 210 |
query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
|
|
@@ -223,6 +251,7 @@ def process_query(user_query, input_type="text"):
|
|
| 223 |
print(f"Detected emotion: {emotion_result}")
|
| 224 |
emotion = emotion_result['label']
|
| 225 |
value = emotion_result['score']
|
|
|
|
| 226 |
# Define RAG prompt
|
| 227 |
prompt_in_chat_format = [
|
| 228 |
{"role": "user", "content": f"""
|
|
@@ -268,17 +297,24 @@ def process_query(user_query, input_type="text"):
|
|
| 268 |
print("β Error during generation:", e)
|
| 269 |
answer = "β οΈ An error occurred while generating the response."
|
| 270 |
|
| 271 |
-
#
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
# Extracting diagnosis
|
| 277 |
diagnosis = extract_diagnosis(answer)
|
| 278 |
status = "fallback" if diagnosis.lower() == "unknown" else "success"
|
| 279 |
|
| 280 |
# Log interaction
|
| 281 |
-
log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=
|
| 282 |
download_path = create_summary_txt(answer)
|
| 283 |
|
| 284 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
@@ -371,27 +407,27 @@ def show_logs():
|
|
| 371 |
return f"β οΈ Error: {e}"
|
| 372 |
|
| 373 |
|
| 374 |
-
def create_summary_pdf(text, filename_prefix="diagnosis_report"):
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
|
| 396 |
|
| 397 |
|
|
@@ -491,22 +527,12 @@ def unified_handler(audio, text):
|
|
| 491 |
else:
|
| 492 |
response, _ = process_query(text, input_type="text")
|
| 493 |
|
| 494 |
-
download_path = create_summary_txt(response)
|
| 495 |
|
| 496 |
return response, download_path
|
| 497 |
|
| 498 |
-
#Agentic Framework from HF spaces
|
| 499 |
-
# agent_iframe = gr.HTML(
|
| 500 |
-
# '<iframe src="https://jaamie-mental-health-agent.hf.space" width="100%" height="700px" style="border:none;"></iframe>'
|
| 501 |
-
# )
|
| 502 |
|
| 503 |
|
| 504 |
-
# if email:
|
| 505 |
-
# send_status = send_email_report(to_email=email, response=response)
|
| 506 |
-
# response += f"\n\n{send_status}"
|
| 507 |
-
|
| 508 |
-
# return response, download_path
|
| 509 |
-
|
| 510 |
|
| 511 |
# Gradio UI
|
| 512 |
|
|
@@ -540,23 +566,6 @@ logs_tab = gr.Interface(
|
|
| 540 |
)
|
| 541 |
|
| 542 |
|
| 543 |
-
# π Anonymous Feedback
|
| 544 |
-
# feedback_tab = gr.Interface(
|
| 545 |
-
# fn=lambda fb, inp_type, query, diag, score, status: submit_feedback(fb, inp_type, query, diag, score, status),
|
| 546 |
-
# inputs=[
|
| 547 |
-
# gr.Textbox(label="π Feedback"),
|
| 548 |
-
# gr.Textbox(label="Input Type"),
|
| 549 |
-
# gr.Textbox(label="Query"),
|
| 550 |
-
# gr.Textbox(label="Diagnosis"),
|
| 551 |
-
# gr.Textbox(label="Confidence Score"),
|
| 552 |
-
# gr.Textbox(label="Status")
|
| 553 |
-
# ],
|
| 554 |
-
# outputs="text",
|
| 555 |
-
# title="π Submit Feedback With Session Metadata"
|
| 556 |
-
# )
|
| 557 |
-
|
| 558 |
-
# def feedback_handler(fb, inp_type, query, diag, score, status):
|
| 559 |
-
# return submit_feedback(fb, inp_type, query, diag, score, status)
|
| 560 |
|
| 561 |
feedback_tab = gr.Interface(
|
| 562 |
fn=submit_feedback,
|
|
|
|
| 17 |
import faiss
|
| 18 |
import numpy as np
|
| 19 |
import gradio as gr
|
| 20 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 21 |
# from google.colab import drive
|
| 22 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 23 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 40 |
|
| 41 |
load_dotenv()
|
| 42 |
|
| 43 |
+
|
| 44 |
+
|
| 45 |
hf_token = os.getenv("HF_TOKEN")
|
| 46 |
+
|
| 47 |
login(token=hf_token)
|
| 48 |
|
| 49 |
|
|
|
|
| 54 |
# π§ Configuration
|
| 55 |
# -------------------------------
|
| 56 |
base_model_path = "google/gemma-2-9b-it"
|
| 57 |
+
#peft_model_path = "Jaamie/gemma-mental-health-qlora"
|
| 58 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
|
| 60 |
embedding_model_bge = "BAAI/bge-base-en-v1.5"
|
|
|
|
| 209 |
return line.split(":")[-1].strip()
|
| 210 |
return "Unknown"
|
| 211 |
|
| 212 |
+
# calculating the correctness of the answer - Hallucination
|
| 213 |
+
def calculate_rag_confidence(query_embedding, top_k_docs_embeddings, generation_logprobs=None):
|
| 214 |
+
"""
|
| 215 |
+
Combines retriever and generation signals to compute a confidence score.
|
| 216 |
+
Args:
|
| 217 |
+
query_embedding (np.ndarray): Embedding vector of the user query (shape: [1, dim]).
|
| 218 |
+
top_k_docs_embeddings (np.ndarray): Embedding matrix of top-k retrieved documents (shape: [k, dim]).
|
| 219 |
+
generation_logprobs (list, optional): List of logprobs for generated tokens.
|
| 220 |
+
Returns:
|
| 221 |
+
float: Final confidence score (0 to 1).
|
| 222 |
+
"""
|
| 223 |
+
retriever_similarities = cosine_similarity(query_embedding, top_k_docs_embeddings)
|
| 224 |
+
retriever_confidence = float(np.max(retriever_similarities))
|
| 225 |
+
|
| 226 |
+
if generation_logprobs:
|
| 227 |
+
gen_confidence = float(np.exp(np.mean(generation_logprobs)))
|
| 228 |
+
else:
|
| 229 |
+
gen_confidence = 0.0 # fallback if unavailable
|
| 230 |
+
|
| 231 |
+
alpha, beta = 0.6, 0.4
|
| 232 |
+
final_confidence = alpha * retriever_confidence + beta * gen_confidence
|
| 233 |
+
return round(final_confidence, 4)
|
| 234 |
+
|
| 235 |
+
# Main Process
|
| 236 |
def process_query(user_query, input_type="text"):
|
| 237 |
# Embed the query
|
| 238 |
query_embedding = embedding_model.encode(user_query, normalize_embeddings=True)
|
|
|
|
| 251 |
print(f"Detected emotion: {emotion_result}")
|
| 252 |
emotion = emotion_result['label']
|
| 253 |
value = emotion_result['score']
|
| 254 |
+
|
| 255 |
# Define RAG prompt
|
| 256 |
prompt_in_chat_format = [
|
| 257 |
{"role": "user", "content": f"""
|
|
|
|
| 297 |
print("β Error during generation:", e)
|
| 298 |
answer = "β οΈ An error occurred while generating the response."
|
| 299 |
|
| 300 |
+
# Get embeddings of retrieved docs
|
| 301 |
+
retrieved_doc_embeddings = embedding_model.encode(retrieved_docs, normalize_embeddings=True)
|
| 302 |
+
retrieved_doc_embeddings = np.array(retrieved_doc_embeddings, dtype=np.float32)
|
| 303 |
+
|
| 304 |
+
# Calculate RAG-based confidence
|
| 305 |
+
confidence_score = calculate_rag_confidence(query_embedding, retrieved_doc_embeddings)
|
| 306 |
+
|
| 307 |
+
# Add to response
|
| 308 |
+
answer += f"\n\nπ§ Accuracy & Closeness of the Answer: {confidence_score:.2f}"
|
| 309 |
+
answer += "\n\n*Derived from semantic similarity and generation certainty."
|
| 310 |
+
|
| 311 |
|
| 312 |
# Extracting diagnosis
|
| 313 |
diagnosis = extract_diagnosis(answer)
|
| 314 |
status = "fallback" if diagnosis.lower() == "unknown" else "success"
|
| 315 |
|
| 316 |
# Log interaction
|
| 317 |
+
log_query(input_type=input_type, query=user_query, diagnosis=diagnosis, confidence_score=confidence_score, status=status)
|
| 318 |
download_path = create_summary_txt(answer)
|
| 319 |
|
| 320 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
| 407 |
return f"β οΈ Error: {e}"
|
| 408 |
|
| 409 |
|
| 410 |
+
# def create_summary_pdf(text, filename_prefix="diagnosis_report"):
|
| 411 |
+
# try:
|
| 412 |
+
# filename = f"{filename_prefix}_{uuid.uuid4().hex[:6]}.pdf"
|
| 413 |
+
# filepath = os.path.join(".", filename) # Save in current directory
|
| 414 |
+
# pdf = FPDF()
|
| 415 |
+
# pdf.add_page()
|
| 416 |
+
# pdf.set_font("Arial", style='B', size=14)
|
| 417 |
+
# pdf.cell(200, 10, txt="π§ Mental Health Diagnosis Report", ln=True, align='C')
|
| 418 |
+
# pdf.set_font("Arial", size=12)
|
| 419 |
+
# pdf.ln(10)
|
| 420 |
+
|
| 421 |
+
# wrapped = textwrap.wrap(text, width=90)
|
| 422 |
+
# for line in wrapped:
|
| 423 |
+
# pdf.cell(200, 10, txt=line, ln=True)
|
| 424 |
+
|
| 425 |
+
# pdf.output(filepath)
|
| 426 |
+
# print(f"β
PDF created at: {filepath}")
|
| 427 |
+
# return filepath
|
| 428 |
+
# except Exception as e:
|
| 429 |
+
# print(f"β Error creating PDF: {e}")
|
| 430 |
+
# return None
|
| 431 |
|
| 432 |
|
| 433 |
|
|
|
|
| 527 |
else:
|
| 528 |
response, _ = process_query(text, input_type="text")
|
| 529 |
|
| 530 |
+
download_path = create_summary_txt(response)
|
| 531 |
|
| 532 |
return response, download_path
|
| 533 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
|
| 535 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
|
| 537 |
# Gradio UI
|
| 538 |
|
|
|
|
| 566 |
)
|
| 567 |
|
| 568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
|
| 570 |
feedback_tab = gr.Interface(
|
| 571 |
fn=submit_feedback,
|