File size: 21,174 Bytes
7c08dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
from utils.poster_eval_utils import *
import json
from utils.wei_utils import get_agent_config
import argparse
from dotenv import load_dotenv
import tempfile
import shutil
import os
import glob
import re
load_dotenv()
def run_qa_and_update_results(
args,
raw_folder,
gen_poster_path,
save_path,
single_model_name=None,
del_model_name=None,
):
"""
If single_model_name is provided, run QA for that one model only,
but update an existing JSON file (which already contains the other
models' results) and re-compute the overall averages.
If single_model_name is None, run QA for all models in all_model_names
and write a new JSON file.
:param raw_folder: Path to folder with 'o3_qa.json'.
:param gen_poster_path: Path to the generated poster image.
:param save_path: Directory where overall_qa_result.json is saved or should be written.
:param all_model_names: List of model names (e.g. ['vllm_qwen_vl', '4o', 'o3']).
:param single_model_name: Optional single model name.
"""
# Load the QA data (questions, answers, aspects)
qa_dict = json.load(open(os.path.join(raw_folder, 'o3_qa.json'), 'r'))
detail_qa = qa_dict['detail']
understanding_qa = qa_dict['understanding']
# Option A: Single model case
if single_model_name is not None:
qa_input_token, qa_output_token = 0, 0
# Load the existing JSON with all previously computed results
existing_path = os.path.join(save_path, "overall_qa_result.json")
with open(existing_path, 'r') as f:
overall_qa_result = json.load(f)
if del_model_name is not None:
# Remove the specified model from the existing results
if del_model_name in overall_qa_result['qa_result']:
del overall_qa_result['qa_result'][del_model_name]
print(f"Removed model {del_model_name} from existing results.")
if single_model_name in overall_qa_result['qa_result']:
print(f"Model {single_model_name} already evaluated. Skipping.")
return
# Evaluate QA for the single_model_name
print(f"Running QA for single model: {single_model_name}")
agent_config = get_agent_config(single_model_name)
if args.poster_method == 'paper':
poster_images = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'), format='jpg')
else:
poster_images = [Image.open(gen_poster_path)]
poster_images = [ensure_under_limit_pil(image) for image in poster_images]
detail_accuracy, detail_aspect_accuracy, detail_agent_answers, input_token, output_token = eval_qa_get_answer(
poster_input=poster_images,
questions=detail_qa['questions'],
answers=detail_qa['answers'],
aspects=detail_qa['aspects'],
input_type='image',
agent_config=agent_config
)
qa_input_token += input_token
qa_output_token += output_token
print('Detail QA accuracy:', detail_accuracy)
understanding_accuracy, understanding_aspect_accuracy, understanding_agent_answers, input_token, output_token = eval_qa_get_answer(
poster_input=poster_images,
questions=understanding_qa['questions'],
answers=understanding_qa['answers'],
aspects=understanding_qa['aspects'],
input_type='image',
agent_config=agent_config
)
qa_input_token += input_token
qa_output_token += output_token
print('Understanding QA accuracy:', understanding_accuracy)
# Update QA result for this one model
# overall_qa_result["qa_result"] is assumed to already have the others
overall_qa_result['qa_result'][single_model_name] = {
'detail_accuracy': detail_accuracy,
'detail_aspect_accuracy': detail_aspect_accuracy,
'detail_agent_answers': detail_agent_answers,
'understanding_accuracy': understanding_accuracy,
'understanding_aspect_accuracy': understanding_aspect_accuracy,
'understanding_agent_answers': understanding_agent_answers
}
# Now re-compute the averages across all models present in the JSON
# Grab all model entries from overall_qa_result['qa_result']
all_models_in_file = list(overall_qa_result['qa_result'].keys())
detail_accs = []
understanding_accs = []
for m in all_models_in_file:
detail_accs.append(overall_qa_result['qa_result'][m]['detail_accuracy'])
understanding_accs.append(overall_qa_result['qa_result'][m]['understanding_accuracy'])
avg_detail_accuracy = float(np.mean(detail_accs)) if detail_accs else 0.0
avg_understanding_accuracy = float(np.mean(understanding_accs)) if understanding_accs else 0.0
overall_qa_result['avg_detail_accuracy'] = avg_detail_accuracy
overall_qa_result['avg_understanding_accuracy'] = avg_understanding_accuracy
# Finally, overwrite the same JSON file with the updated results
with open(existing_path, 'w') as f:
json.dump(overall_qa_result, f, indent=4)
print(f'Input tokens: {qa_input_token}')
print(f'Output tokens: {qa_output_token}')
print('Updated overall_qa_result.json with single-model results.')
print('New average detail accuracy:', avg_detail_accuracy)
print('New average understanding accuracy:', avg_understanding_accuracy)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--paper_name', type=str)
parser.add_argument('--base_dir', type=str, default='Paper2Poster-data')
parser.add_argument('--poster_method', type=str)
parser.add_argument('--poster_image_name', type=str, default='poster.png', choices=['poster.png'])
parser.add_argument('--metric', type=str, choices=['stats', 'qa', 'judge', 'word_count', 'token_count', 'figure_count', 'aesthetic_judge'], default='stats')
parser.add_argument('--fix', type=str, default=None)
parser.add_argument('--del_model_name', type=str, default=None)
args = parser.parse_args()
raw_poster_path = f'{args.base_dir}/{args.paper_name}/poster.png'
raw_folder = f'{args.base_dir}/{args.paper_name}'
gen_poster_path = f'{args.poster_method}/{args.base_dir}/{args.paper_name}/{args.poster_image_name}'
gen_folder = f'{args.poster_method}/{args.base_dir}/{args.paper_name}'
save_path = f'eval_results/{args.paper_name}/{args.poster_method}'
os.makedirs(save_path, exist_ok=True)
if args.poster_method == 'paper':
if args.metric == 'qa' and args.fix is not None:
overall_qa_result = json.load(open(f'{save_path}/overall_qa_result.json', 'r'))
if args.fix in overall_qa_result['qa_result']:
print(f"Model {args.fix} already evaluated. Skipping.")
exit(0)
# create a temp folder to store the paper
# 1) Create a unique temp folder
temp_dir = tempfile.mkdtemp(prefix="eval_temp", suffix="_data")
# 2) Build your source directory path, replacing spaces
paper_slug = args.paper_name.replace(' ', '_')
source_dir = os.path.join('<4o_vllm_qwen>_images_and_tables', paper_slug)
# 3) Sequentially copy files named "<paper_slug>-<index>.png"
index = 1
while True:
filename = f"{paper_slug}-{index}.png"
src_path = os.path.join(source_dir, filename)
if not os.path.isfile(src_path):
# stop once the next index is missing
break
shutil.copy2(src_path, os.path.join(temp_dir, filename))
index += 1
if index > 20 and args.metric != 'word_count' and args.metric != 'token_count':
break
gen_folder = temp_dir
gen_poster_path = f'{args.base_dir}/{args.paper_name}/paper.pdf'
print('Evaluating poster:', args.paper_name)
if args.metric == 'stats':
stats_file = os.path.join(save_path, 'stats_result.json')
# 1) load existing results if there are any
if os.path.exists(stats_file):
with open(stats_file, 'r') as f:
stats_result = json.load(f)
print(f"Loaded existing stats from {stats_file}")
else:
stats_result = {}
# 2) CLIP similarity
if 'CLIP_similarity' not in stats_result:
_, cos_sim = compare_folders_with_clip(raw_folder, gen_folder)
stats_result['CLIP_similarity'] = cos_sim
print(f'CLIP similarity: {cos_sim}')
else:
print(f"Skipping CLIP similarity (already {stats_result['CLIP_similarity']})")
# 3) we only need to regenerate markdown+images if any of the text/image metrics is missing
need_eval = any(k not in stats_result for k in ('textual_ppl', 'mixtual_ppl', 'visual_relevance', 'visual_ppl'))
if need_eval:
images, poster_text, raw_markdown, new_markdown = gen_eval_markdown(
args.paper_name,
args.poster_method,
gen_poster_path
)
# textual PPL
if 'textual_ppl' not in stats_result:
textual_ppl = get_ppl(poster_text)
stats_result['textual_ppl'] = textual_ppl
print(f'Textual PPL: {textual_ppl}')
else:
print(f"Skipping textual PPL (already {stats_result['textual_ppl']})")
# mixtual PPL
if 'mixtual_ppl' not in stats_result:
mixtual_ppl = get_ppl(new_markdown)
stats_result['mixtual_ppl'] = mixtual_ppl
print(f'Mixtual PPL: {mixtual_ppl}')
else:
print(f"Skipping mixtual PPL (already {stats_result['mixtual_ppl']})")
# visual relevance
if 'visual_relevance' not in stats_result:
if images:
sims = [
compute_cosine_similarity(v['image_clip_embedding'],
v['section_text_clip_embedding'])
for v in images.values()
]
avg_sim = float(np.mean(sims))
stats_result['visual_relevance'] = avg_sim
print(f'Average cosine similarity: {avg_sim}')
else:
stats_result['visual_relevance'] = 0.0
print('No images found in the poster. Set visual_relevance to 0.')
else:
print(f"Skipping visual relevance (already {stats_result['visual_relevance']})")
if 'visual_ppl' not in stats_result or math.isnan(stats_result['visual_ppl']):
visual_ppls = []
for relative_path, v in images.items():
image_path = os.path.join('eval_poster_markdown', args.paper_name, args.poster_method, relative_path)
image = Image.open(image_path)
visual_ppl = get_visual_ppl(image, poster_text)
visual_ppls.append(visual_ppl)
avg_visual_ppl = float(np.mean(visual_ppls))
stats_result['visual_ppl'] = avg_visual_ppl
print(f'Average visual PPL: {avg_visual_ppl}')
else:
print("All textual and visual metrics already computed; skipping gen_eval_markdown.")
if 'interleaved_ppl' not in stats_result:
interleaved_ppl = compute_interleaved_ppl(args.paper_name, args.poster_method)
stats_result['interleaved_ppl'] = interleaved_ppl
print(f'Interleaved PPL: {interleaved_ppl}')
else:
print(f"Skipping interleaved PPL (already {stats_result['interleaved_ppl']})")
if 'poster_image_ppl' not in stats_result:
if args.poster_method == 'paper':
poster_images = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'), format='jpg')
else:
poster_images = [Image.open(gen_poster_path)]
poster_image_ppl = compute_poster_image_ppl(poster_images)
stats_result['poster_image_ppl'] = poster_image_ppl
print(f'Poster image PPL: {poster_image_ppl}')
else:
print(f"Skipping poster image PPL (already {stats_result['poster_image_ppl']})")
# 4) write back updated file
with open(stats_file, 'w') as f:
json.dump(stats_result, f, indent=4)
print(f"Updated stats written to {stats_file}")
elif args.metric == 'figure_count':
save_file_path = os.path.join(save_path, 'figure_count.json')
if os.path.exists(save_file_path):
print(f"Figure count already exists at {save_file_path}. Skipping.")
else:
figure_count = gen_eval_markdown(
args.paper_name,
args.poster_method,
gen_poster_path,
figure_count_only=True
)
with open(save_file_path, 'w') as f:
json.dump({'figure_count': figure_count}, f, indent=4)
print(f"Figure count saved to {save_file_path}")
elif args.metric == 'qa':
if args.fix is not None:
run_qa_and_update_results(
args,
raw_folder,
gen_poster_path,
save_path,
single_model_name=args.fix,
del_model_name=args.del_model_name
)
else:
overall_qa_result = {}
qa_result = {}
qa_dict = json.load(open(os.path.join(raw_folder, 'o3_qa.json'), 'r'))
detail_qa = qa_dict['detail']
understanding_qa = qa_dict['understanding']
model_names = [
'4o',
'o3',
'4o-mini'
]
if args.poster_method == 'paper':
poster_images = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'))
else:
poster_images = [Image.open(gen_poster_path)]
poster_images = [ensure_under_limit_pil(image) for image in poster_images]
for model_name in model_names:
qa_input_token, qa_output_token = 0, 0
print('QA model:', model_name)
agent_config = get_agent_config(model_name)
detail_accuracy, detail_aspect_accuracy, detail_agent_answers, input_token, output_token = eval_qa_get_answer(
poster_input=poster_images,
questions=detail_qa['questions'],
answers=detail_qa['answers'],
aspects=detail_qa['aspects'],
input_type='image',
agent_config=agent_config
)
print(f'{model_name} Detail QA accuracy:', detail_accuracy)
qa_input_token += input_token
qa_output_token += output_token
understanding_accuracy, understanding_aspect_accuracy, understanding_agent_answers, input_token, output_token = eval_qa_get_answer(
poster_input=poster_images,
questions=understanding_qa['questions'],
answers=understanding_qa['answers'],
aspects=understanding_qa['aspects'],
input_type='image',
agent_config=agent_config
)
print(f'{model_name} Understanding QA accuracy:', understanding_accuracy)
qa_input_token += input_token
qa_output_token += output_token
qa_result[model_name] = {
'detail_accuracy': detail_accuracy,
'detail_aspect_accuracy': detail_aspect_accuracy,
'detail_agent_answers': detail_agent_answers,
'understanding_accuracy': understanding_accuracy,
'understanding_aspect_accuracy': understanding_aspect_accuracy,
'understanding_agent_answers': understanding_agent_answers
}
print(f'{model_name} Input tokens:', qa_input_token)
print(f'{model_name} Output tokens:', qa_output_token)
# average the results
avg_detail_accuracy = np.mean([qa_result[model_name]['detail_accuracy'] for model_name in model_names])
avg_understanding_accuracy = np.mean([qa_result[model_name]['understanding_accuracy'] for model_name in model_names])
print('Average detail accuracy:', avg_detail_accuracy)
print('Average understanding accuracy:', avg_understanding_accuracy)
overall_qa_result['avg_detail_accuracy'] = avg_detail_accuracy
overall_qa_result['avg_understanding_accuracy'] = avg_understanding_accuracy
overall_qa_result['qa_result'] = qa_result
with open(f'{save_path}/overall_qa_result.json', 'w') as f:
json.dump(overall_qa_result, f, indent=4)
elif args.metric == 'word_count':
if args.poster_method == 'paper':
# loop through all images in the folder
image_paths = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'), return_path=True)
word_count = 0
for image_path in image_paths:
# count words in each image
word_count += count_words_in_image(image_path)
else:
word_count = count_words_in_image(gen_poster_path)
# save to json
with open(f'{save_path}/word_count.json', 'w') as f:
json.dump({'word_count': word_count}, f, indent=4)
elif args.metric == 'token_count':
if args.poster_method == 'paper':
# loop through all images in the folder
image_paths = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'), return_path=True)
token_count = 0
for image_path in image_paths:
# count tokens in each image
token_count += count_tokens_in_image(image_path)
else:
token_count = count_tokens_in_image(gen_poster_path)
# save to json
with open(f'{save_path}/token_count.json', 'w') as f:
json.dump({'token_count': token_count}, f, indent=4)
elif args.metric == 'judge':
agent_config = get_agent_config('4o')
if args.poster_method == 'paper':
poster_images = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'))
else:
poster_images = [Image.open(gen_poster_path)]
results = eval_vlm_as_judge(
poster_image_list=poster_images,
agent_config=agent_config,
)
aesthetic_aspects = [
'aesthetic_element',
'aesthetic_engagement',
'aesthetic_layout'
]
information_aspects = [
'information_low_level',
'information_logic',
'information_content',
]
# compute average scores for all, for aesthetic, and for information
overall_average = np.mean([results[aspect]['score'] for aspect in results])
aesthetic_average = np.mean([results[aspect]['score'] for aspect in results if aspect in aesthetic_aspects])
information_average = np.mean([results[aspect]['score'] for aspect in results if aspect in information_aspects])
judge_result = {
'overall_average': overall_average,
'aesthetic_average': aesthetic_average,
'information_average': information_average,
'results': results
}
# save to json
with open(f'{save_path}/judge_result.json', 'w') as f:
json.dump(judge_result, f, indent=4)
elif args.metric == 'aesthetic_judge':
agent_config = get_agent_config('4o')
if args.poster_method == 'paper':
poster_images = open_folder_images(gen_folder, args.paper_name.replace(' ', '_'))
else:
poster_images = [Image.open(gen_poster_path)]
results = eval_vlm_as_judge(
poster_image_list=poster_images,
agent_config=agent_config,
aspect='aesthetic'
)
aesthetic_aspects = [
'aesthetic_element',
'aesthetic_engagement',
'aesthetic_layout'
]
aesthetic_average = np.mean([results[aspect]['score'] for aspect in results if aspect in aesthetic_aspects])
judge_result = {
'aesthetic_average': aesthetic_average,
'results': results
}
# save to json
with open(f'{save_path}/aesthetic_judge_result.json', 'w') as f:
json.dump(judge_result, f, indent=4)
if args.poster_method == 'paper':
# remove the temp folder
shutil.rmtree(temp_dir)
print(f"Removed temporary folder {temp_dir}")
|