File size: 26,958 Bytes
7c08dc3
 
 
 
0f74dc7
 
7c08dc3
 
 
0f74dc7
7c08dc3
 
0f74dc7
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f74dc7
 
 
 
 
 
 
 
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d563bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d563bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c08dc3
 
0d563bd
7c08dc3
0d563bd
7c08dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
print("Initializing...")
from PosterAgent.parse_raw import parse_raw, gen_image_and_table
from PosterAgent.gen_outline_layout import filter_image_table, gen_outline_layout_v2
from utils.wei_utils import get_agent_config, scale_to_target_area
# from PosterAgent.tree_split_layout import main_train, main_inference, get_arrangments_in_inches, split_textbox, to_inches
# from PosterAgent.gen_pptx_code import generate_poster_code
# from utils.src.utils import ppt_to_images
# from PosterAgent.gen_poster_content import gen_bullet_point_content
# from utils.ablation_utils import no_tree_get_layout

# Import refactored utilities
# from utils.logo_utils import LogoManager, add_logos_to_poster_code
# from utils.config_utils import (
#     load_poster_yaml_config, extract_font_sizes, extract_colors,
#     extract_vertical_alignment, extract_section_title_symbol, normalize_config_values
# )
# from utils.style_utils import apply_all_styles
# from utils.theme_utils import get_default_theme, create_theme_with_alignment, resolve_colors

# from PosterAgent.gen_beamer_code import (
#     generate_beamer_poster_code,
#     save_beamer_code,
#     compile_beamer_to_pdf,
#     convert_pptx_layout_to_beamer
# )

import argparse
import json

import time
import shutil

units_per_inch = 25
def to_inches(value_in_units, units_per_inch=72):
    """
    Convert a single coordinate or dimension from 'units' to inches.
    For example, if your units are 'points' (72 points = 1 inch),
    then units_per_inch=72.
    If your units are 'pixels' at 96 DPI, then units_per_inch=96.
    """
    return value_in_units / units_per_inch

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='Poster Generation Pipeline with Logo Support')
    parser.add_argument('--poster_path', type=str)
    parser.add_argument('--model_name_t', type=str, default='4o')
    parser.add_argument('--model_name_v', type=str, default='4o')
    parser.add_argument('--index', type=int, default=0)
    parser.add_argument('--poster_name', type=str, default=None)
    parser.add_argument('--tmp_dir', type=str, default='tmp')
    parser.add_argument('--estimate_chars', action='store_true')
    parser.add_argument('--max_workers', type=int, default=10)
    parser.add_argument('--poster_width_inches', type=int, default=None)
    parser.add_argument('--poster_height_inches', type=int, default=None)
    parser.add_argument('--no_blank_detection', action='store_true', help='When overflow is severe, try this option.')
    parser.add_argument('--ablation_no_tree_layout', action='store_true', help='Ablation study: no tree layout')
    parser.add_argument('--ablation_no_commenter', action='store_true', help='Ablation study: no commenter')
    parser.add_argument('--ablation_no_example', action='store_true', help='Ablation study: no example')

    # Logo-related arguments
    parser.add_argument('--conference_venue', type=str, default=None,
                       help='Conference name for automatic logo search (e.g., "NeurIPS", "CVPR")')
    parser.add_argument('--institution_logo_path', type=str, default=None,
                       help='Custom path to institution logo (auto-searches from paper metadata if not provided)')
    parser.add_argument('--conference_logo_path', type=str, default=None,
                       help='Custom path to conference logo (auto-searches if venue specified)')
    parser.add_argument('--use_google_search', action='store_true',
                       help='Use Google Custom Search API for logo search (requires API keys in .env)')

    args = parser.parse_args()

    start_time = time.time()

    os.makedirs(args.tmp_dir, exist_ok=True)

    detail_log = {}

    agent_config_t = get_agent_config(args.model_name_t)
    agent_config_v = get_agent_config(args.model_name_v)
    poster_name = args.poster_path.split('/')[-2].replace(' ', '_')
    if args.poster_name is None:
        args.poster_name = poster_name
    else:
        poster_name = args.poster_name
    meta_json_path = args.poster_path.replace('paper.pdf', 'meta.json')
    if args.poster_width_inches is not None and args.poster_height_inches is not None:
        poster_width = args.poster_width_inches * units_per_inch
        poster_height = args.poster_height_inches * units_per_inch
    elif os.path.exists(meta_json_path):
        meta_json = json.load(open(meta_json_path, 'r'))
        poster_width = meta_json['width']
        poster_height = meta_json['height']
    else:
        poster_width = 48 * units_per_inch
        poster_height = 36 * units_per_inch

    poster_width, poster_height = scale_to_target_area(poster_width, poster_height)
    poster_width_inches = to_inches(poster_width, units_per_inch)
    poster_height_inches = to_inches(poster_height, units_per_inch)

    if poster_width_inches > 56 or poster_height_inches > 56:
        # Work out which side is longer, then compute a single scale factor
        if poster_width_inches >= poster_height_inches:
            scale_factor = 56 / poster_width_inches
        else:
            scale_factor = 56 / poster_height_inches

        poster_width_inches  *= scale_factor
        poster_height_inches *= scale_factor

        # convert back to internal units
        poster_width  = poster_width_inches  * units_per_inch
        poster_height = poster_height_inches * units_per_inch

    print(f'Poster size: {poster_width_inches} x {poster_height_inches} inches')

    total_input_tokens_t, total_output_tokens_t = 0, 0
    total_input_tokens_v, total_output_tokens_v = 0, 0

    # Step 1: Parse the raw poster
    input_token, output_token, raw_result = parse_raw(args, agent_config_t, version=2)
    total_input_tokens_t += input_token
    total_output_tokens_t += output_token

    _, _, images, tables = gen_image_and_table(args, raw_result)

    print(f'Parsing token consumption: {input_token} -> {output_token}')

    parser_time_taken = time.time() - start_time
    print(f'Parser time: {parser_time_taken:.2f} seconds')
    detail_log['parser_time'] = parser_time_taken

    parser_time = time.time()

    detail_log['parser_in_t'] = input_token
    detail_log['parser_out_t'] = output_token

    # # Initialize LogoManager
    # logo_manager = LogoManager()
    # institution_logo_path = args.institution_logo_path
    # conference_logo_path = args.conference_logo_path

    # # Auto-detect institution from paper if not provided
    # # Now using the raw_result directly instead of reading from file
    # if not institution_logo_path:
    #     print("\n" + "="*60)
    #     print("🔍 AUTO-DETECTING INSTITUTION FROM PAPER")
    #     print("="*60)

    #     # Use the raw_result we already have from the parser
    #     if raw_result:
    #         print(f"📄 Using parsed paper content")
    #         # Extract text content from the ConversionResult object
    #         try:
    #             paper_text = raw_result.document.export_to_markdown()
    #         except:
    #             # Fallback: try to get text content in another way
    #             paper_text = str(raw_result)

    #         print("🔎 Searching for FIRST AUTHOR's institution...")
    #         first_author_inst = logo_manager.extract_first_author_institution(paper_text)

    #         if first_author_inst:
    #             print(f"\n✅ FIRST AUTHOR INSTITUTION: {first_author_inst}")
    #             print(f"🔍 Searching for logo: {first_author_inst}")

    #             inst_logo_path = logo_manager.get_logo_path(first_author_inst, category="institute", use_google=args.use_google_search)
    #             if inst_logo_path:
    #                 institution_logo_path = str(inst_logo_path)
    #                 print(f"✅ Institution logo found: {institution_logo_path}")
    #             else:
    #                 print(f"❌ Could not find/download logo for: {first_author_inst}")
    #         else:
    #             print("❌ No first author institution detected or matched with available logos")
    #     else:
    #         print("❌ No parsed content available")
    #     print("="*60 + "\n")

    # # Handle conference logo
    # if args.conference_venue and not conference_logo_path:
    #     print("\n" + "="*60)
    #     print("🏛️ SEARCHING FOR CONFERENCE LOGO")
    #     print("="*60)
    #     print(f"📍 Conference: {args.conference_venue}")
    #     print(f"🔍 Searching for logo...")

    #     conf_logo_path = logo_manager.get_logo_path(args.conference_venue, category="conference", use_google=args.use_google_search)
    #     if conf_logo_path:
    #         conference_logo_path = str(conf_logo_path)
    #         print(f"✅ Conference logo found: {conference_logo_path}")
    #     else:
    #         print(f"❌ Could not find/download logo for: {args.conference_venue}")
    #         # Note: Web search is now handled inside get_logo_path automatically
    #     print("="*60 + "\n")

    # Step 2: Filter unnecessary images and tables
    input_token, output_token = filter_image_table(args, agent_config_t)
    total_input_tokens_t += input_token
    total_output_tokens_t += output_token
    print(f'Filter figures token consumption: {input_token} -> {output_token}')

    filter_time_taken = time.time() - parser_time
    print(f'Filter time: {filter_time_taken:.2f} seconds')
    detail_log['filter_time'] = filter_time_taken

    filter_time = time.time()

    detail_log['filter_in_t'] = input_token
    detail_log['filter_out_t'] = output_token

    # Step 3: Generate outline
    input_token, output_token, panels, figures = gen_outline_layout_v2(args, agent_config_t)
    total_input_tokens_t += input_token
    total_output_tokens_t += output_token
    print(f'Outline token consumption: {input_token} -> {output_token}')

    outline_time_taken = time.time() - filter_time
    print(f'Outline time: {outline_time_taken:.2f} seconds')
    detail_log['outline_time'] = outline_time_taken

    outline_time = time.time()

    detail_log['outline_in_t'] = input_token
    detail_log['outline_out_t'] = output_token

    # if args.ablation_no_tree_layout:
    #     panel_arrangement, figure_arrangement, text_arrangement, input_token, output_token = no_tree_get_layout(
    #         poster_width,
    #         poster_height,
    #         panels,
    #         figures,
    #         agent_config_t
    #     )
    #     total_input_tokens_t += input_token
    #     total_output_tokens_t += output_token
    #     print(f'No tree layout token consumption: {input_token} -> {output_token}')
    #     detail_log['no_tree_layout_in_t'] = input_token
    #     detail_log['no_tree_layout_out_t'] = output_token
    # else:

    #     # Step 4: Learn and generate layout
    #     panel_model_params, figure_model_params = main_train()

    #     panel_arrangement, figure_arrangement, text_arrangement = main_inference(
    #         panels,
    #         panel_model_params,
    #         figure_model_params,
    #         poster_width,
    #         poster_height,
    #         shrink_margin=3
    #     )

    #     text_arrangement_title = text_arrangement[0]
    #     text_arrangement = text_arrangement[1:]
    #     # Split the title textbox into two parts
    #     text_arrangement_title_top, text_arrangement_title_bottom = split_textbox(
    #         text_arrangement_title,
    #         0.8
    #     )
    #     # Add the split textboxes back to the list
    #     text_arrangement = [text_arrangement_title_top, text_arrangement_title_bottom] + text_arrangement

    # for i in range(len(figure_arrangement)):
    #     panel_id = figure_arrangement[i]['panel_id']
    #     panel_section_name = panels[panel_id]['section_name']
    #     figure_info = figures[panel_section_name]
    #     if 'image' in figure_info:
    #         figure_id = figure_info['image']
    #         if not figure_id in images:
    #             figure_path = images[str(figure_id)]['image_path']
    #         else:
    #             figure_path = images[figure_id]['image_path']
    #     elif 'table' in figure_info:
    #         figure_id = figure_info['table']
    #         if not figure_id in tables:
    #             figure_path = tables[str(figure_id)]['table_path']
    #         else:
    #             figure_path = tables[figure_id]['table_path']

    #     figure_arrangement[i]['figure_path'] = figure_path

    # for text_arrangement_item in text_arrangement:
    #     num_chars = char_capacity(
    #         bbox=(text_arrangement_item['x'], text_arrangement_item['y'], text_arrangement_item['height'], text_arrangement_item['width'])
    #     )
    #     text_arrangement_item['num_chars'] = num_chars


    # width_inch, height_inch, panel_arrangement_inches, figure_arrangement_inches, text_arrangement_inches = get_arrangments_in_inches(
    #     poster_width, poster_height, panel_arrangement, figure_arrangement, text_arrangement, 25
    # )

    # # Save to file
    # tree_split_results = {
    #     'poster_width': poster_width,
    #     'poster_height': poster_height,
    #     'poster_width_inches': width_inch,
    #     'poster_height_inches': height_inch,
    #     'panels': panels,
    #     'panel_arrangement': panel_arrangement,
    #     'figure_arrangement': figure_arrangement,
    #     'text_arrangement': text_arrangement,
    #     'panel_arrangement_inches': panel_arrangement_inches,
    #     'figure_arrangement_inches': figure_arrangement_inches,
    #     'text_arrangement_inches': text_arrangement_inches,
    # }

    # ============================
    #  ### NEW: only build a simple figure_arrangement with {panel_id, figure_path}
    # ============================

    # 有些项目把 images/tables 放在上游全局;若未定义,则从过滤结果 JSON 兜底加载
    try:
        images
    except NameError:
        images = json.load(open(f'<{args.model_name_t}_{args.model_name_v}>_images_and_tables/{args.poster_name}_images_filtered.json', 'r'))
    try:
        tables
    except NameError:
        tables = json.load(open(f'<{args.model_name_t}_{args.model_name_v}>_images_and_tables/{args.poster_name}_tables_filtered.json', 'r'))

    # 建立 section_name -> panel_id 的映射
    section2pid = {p['section_name']: p['panel_id'] for p in panels}

    # 生成精简后的 figure_arrangement:只保留 panel_id 与 figure_path
    simple_figure_arrangement = []
    for section_name, f in figures.items():
        if section_name not in section2pid:
            continue
        pid = section2pid[section_name]

        fig_path = None
        if 'image' in f:
            fid = str(f['image'])
            info = images.get(fid) or images.get(str(fid)) or {}
            fig_path = info.get('image_path')
        elif 'table' in f:
            tid = str(f['table'])
            info = tables.get(tid) or tables.get(str(tid)) or {}
            fig_path = info.get('table_path')

        if fig_path:  # 只收集有路径的
            simple_figure_arrangement.append({
                'panel_id': pid,
                'figure_path': fig_path,
            })

    # ============================
    #  ### REMOVED: no layout/train/text capacity/inches conversion
    #  - 删除 args.ablation_no_tree_layout 分支
    #  - 删除 main_train() / main_inference()
    #  - 删除为 figure_arrangement[i] 补 figure_path 的循环
    #  - 删除 text_arrangement / char_capacity / get_arrangments_in_inches
    # ============================

    # Save to file (只保留 panels + figure_arrangement)
    tree_split_results = {
        'panels': panels,
        'figure_arrangement': simple_figure_arrangement,
    }

    os.makedirs('tree_splits', exist_ok=True)
    with open(f'tree_splits/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_tree_split_{args.index}.json', 'w') as f:
        json.dump(tree_split_results, f, indent=4)

    layout_time_taken = time.time() - outline_time
    print(f'Layout time: {layout_time_taken:.2f} seconds')
    detail_log['layout_time'] = layout_time_taken

    layout_time = time.time()
    
    # # === Configuration Loading ===
    # print("\n📋 Loading configuration from YAML files...", flush=True)
    # yaml_cfg = load_poster_yaml_config(args.poster_path)

    # # Extract configuration values
    # bullet_fs, title_fs, poster_title_fs, poster_author_fs = extract_font_sizes(yaml_cfg)
    # title_text_color, title_fill_color, main_text_color, main_text_fill_color = extract_colors(yaml_cfg)
    # section_title_vertical_align = extract_vertical_alignment(yaml_cfg)
    # section_title_symbol = extract_section_title_symbol(yaml_cfg)

    # # Normalize configuration values
    # bullet_fs, title_fs, poster_title_fs, poster_author_fs, \
    # title_text_color, title_fill_color, main_text_color, main_text_fill_color = normalize_config_values(
    #     bullet_fs, title_fs, poster_title_fs, poster_author_fs,
    #     title_text_color, title_fill_color, main_text_color, main_text_fill_color
    # )

    # # Store configuration in args
    # setattr(args, 'bullet_font_size', bullet_fs)
    # setattr(args, 'section_title_font_size', title_fs)
    # setattr(args, 'poster_title_font_size', poster_title_fs)
    # setattr(args, 'poster_author_font_size', poster_author_fs)
    # setattr(args, 'title_text_color', title_text_color)
    # setattr(args, 'title_fill_color', title_fill_color)
    # setattr(args, 'main_text_color', main_text_color)
    # setattr(args, 'main_text_fill_color', main_text_fill_color)
    # setattr(args, 'section_title_vertical_align', section_title_vertical_align)

    # # Step 5: Generate content
    # print(f"\n✍️ Generating poster content (max_workers={args.max_workers})...", flush=True)
    # # --- Step 1: 检查缓存 ---
    # content_cache_path = f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_bullet_point_content_{args.index}.json'

    # if os.path.exists(content_cache_path):
    #     print(f"🧩 Cache found: {content_cache_path}")
    #     print("⚡ Skipping model generation, loading from cache...")
    #     bullet_content = json.load(open(content_cache_path, 'r'))
    #     input_token_t = output_token_t = input_token_v = output_token_v = 0
    # else:
    #     print("🧠 Running model to generate poster content...")
    #     input_token_t, output_token_t, input_token_v, output_token_v = gen_bullet_point_content(
    #         args, agent_config_t, agent_config_v, tmp_dir=args.tmp_dir
    #     )
    #     bullet_content = json.load(open(content_cache_path, 'r'))

    # input_token_t, output_token_t, input_token_v, output_token_v = gen_bullet_point_content(args, agent_config_t, agent_config_v, tmp_dir=args.tmp_dir)
    # total_input_tokens_t += input_token
    # total_output_tokens_t += output_token
    # total_input_tokens_v += input_token_v
    # total_output_tokens_v += output_token_v
    # print(f'Content generation token consumption T: {input_token_t} -> {output_token_t}')
    # print(f'Content generation token consumption V: {input_token_v} -> {output_token_v}')

    # content_time_taken = time.time() - layout_time
    # print(f'Content generation time: {content_time_taken:.2f} seconds')
    # detail_log['content_time'] = content_time_taken

    # content_time = time.time()

    # bullet_content = json.load(open(f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_bullet_point_content_{args.index}.json', 'r'))

    # detail_log['content_in_t'] = input_token_t
    # detail_log['content_out_t'] = output_token_t
    # detail_log['content_in_v'] = input_token_v
    # detail_log['content_out_v'] = output_token_v

    # # === Style Application ===
    # print("\n🎨 Applying styles and colors...", flush=True)

    # # Resolve colors with fallbacks
    # final_title_text_color, final_title_fill_color, final_main_text_color, final_main_text_fill_color = resolve_colors(
    #     getattr(args, 'title_text_color', None),
    #     getattr(args, 'title_fill_color', None),
    #     getattr(args, 'main_text_color', None),
    #     getattr(args, 'main_text_fill_color', None)
    # )

    # # Apply all styles in one go
    # bullet_content = apply_all_styles(
    #     bullet_content,
    #     title_text_color=final_title_text_color,
    #     title_fill_color=final_title_fill_color,
    #     main_text_color=final_main_text_color,
    #     main_text_fill_color=final_main_text_fill_color,
    #     section_title_symbol=section_title_symbol,
    #     main_text_font_size=bullet_fs
    # )

    # # === Poster Generation ===
    # # print("\n🎯 Generating PowerPoint code...", flush=True)

    # # Create theme with alignment
    # base_theme = get_default_theme()
    # theme_with_alignment = create_theme_with_alignment(
    #     base_theme,
    #     getattr(args, 'section_title_vertical_align', None)
    # )

    # # poster_code = generate_poster_code(
    # #     panel_arrangement_inches,
    # #     text_arrangement_inches,
    # #     figure_arrangement_inches,
    # #     presentation_object_name='poster_presentation',
    # #     slide_object_name='poster_slide',
    # #     utils_functions=utils_functions,
    # #     slide_width=width_inch,
    # #     slide_height=height_inch,
    # #     img_path=None,
    # #     save_path=f'{args.tmp_dir}/poster.pptx',
    # #     visible=False,
    # #     content=bullet_content,
    # #     theme=theme_with_alignment,
    # #     tmp_dir=args.tmp_dir,
    # # )
    # print("\n🎯 Generating Beamer poster (LaTeX)...", flush=True)

    # # --- 1. 提取 poster_info ---
    # poster_info = {
    #     "title": args.poster_name,
    #     "author": "AutoGen",
    #     "institute": "Auto-detected Institution"
    # }
    # if isinstance(bullet_content, list) and len(bullet_content) > 0:
    #     first_section = bullet_content[0]
    #     if isinstance(first_section, dict):
    #         if "poster_title" in first_section:
    #             poster_info["title"] = first_section["poster_title"]
    #         elif "title" in first_section:
    #             poster_info["title"] = first_section["title"]

    # --- 2. 构造 Beamer 数据结构 ---
    # layout_data = {
    #     "text_arrangement": text_arrangement,
    #     "figure_arrangement": figure_arrangement
    # }
    # beamer_data = convert_pptx_layout_to_beamer(layout_data)

    # 将 bullet_content 映射进 sections
    # for i, section in enumerate(beamer_data["sections"]):
    #     if i < len(bullet_content):
    #         section_data = bullet_content[i]
    #         if isinstance(section_data, dict):
    #             section["content"] = section_data.get("textbox1") or section_data.get("title") or json.dumps(section_data)
    #         else:
    #             section["content"] = str(section_data)

    # --- 3. 生成 LaTeX 文件 ---
    # poster_info = {k: (str(v) if not isinstance(v, str) else v) for k, v in poster_info.items()}

    # beamer_code = generate_beamer_poster_code(
    #     beamer_data["sections"],
    #     beamer_data["figures"],
    #     poster_info,
    #     width_cm=poster_width_inches * 2.54,
    #     height_cm=poster_height_inches * 2.54,
    #     theme="Madrid",
    #     output_path=f"{args.tmp_dir}/{poster_name}.tex"
    # )
    # save_beamer_code(beamer_code, f"{args.tmp_dir}/{poster_name}.tex")


    # --- 4. 编译为 PDF ---
    # output_dir = f'<{args.model_name_t}_{args.model_name_v}>_generated_beamer_posters/{args.poster_path.replace("paper.pdf", "")}'
    # compile_beamer_to_pdf(f"{args.tmp_dir}/{poster_name}.tex", output_dir=args.tmp_dir)
    # pdf_path = os.path.join(args.tmp_dir, f"{poster_name}.pdf")
    # os.makedirs(output_dir, exist_ok=True)
    # os.rename(pdf_path, os.path.join(output_dir, f"{poster_name}.pdf"))

    # print(f"✅ Beamer poster PDF saved to {output_dir}")
    # Add logos to the poster
    # print("\n🖼️ Adding logos to poster...", flush=True)
    # poster_code = add_logos_to_poster_code(
    #     poster_code,
    #     width_inch,
    #     height_inch,
    #     institution_logo_path=institution_logo_path,
    #     conference_logo_path=conference_logo_path
    # )

    # output, err = run_code(poster_code)
    # if err is not None:
    #     raise RuntimeError(f'Error in generating PowerPoint: {err}')

    # # Step 8: Create a folder in the output directory
    # output_dir = f'<{args.model_name_t}_{args.model_name_v}>_generated_posters/{args.poster_path.replace("paper.pdf", "")}'
    # os.makedirs(output_dir, exist_ok=True)

    # # Copy logos to output directory for reference
    # logos_dir = os.path.join(output_dir, 'logos')
    # if institution_logo_path or conference_logo_path:
    #     os.makedirs(logos_dir, exist_ok=True)
    #     if institution_logo_path and os.path.exists(institution_logo_path):
    #         shutil.copy2(institution_logo_path, os.path.join(logos_dir, 'institution_logo' + os.path.splitext(institution_logo_path)[1]))
    #     if conference_logo_path and os.path.exists(conference_logo_path):
    #         shutil.copy2(conference_logo_path, os.path.join(logos_dir, 'conference_logo' + os.path.splitext(conference_logo_path)[1]))

    # # Step 9: Move poster.pptx to the output directory
    # pptx_path = os.path.join(output_dir, f'{poster_name}.pptx')
    # os.rename(f'{args.tmp_dir}/poster.pptx', pptx_path)
    # print(f'Poster PowerPoint saved to {pptx_path}')
    # # Step 10: Convert the PowerPoint to images
    # ppt_to_images(pptx_path, output_dir)
    # print(f'Poster images saved to {output_dir}')

    # end_time = time.time()
    # time_taken = end_time - start_time

    # render_time_taken = time.time() - content_time
    # print(f'Render time: {render_time_taken:.2f} seconds')
    # detail_log['render_time'] = render_time_taken

    # # log
    # log_file = os.path.join(output_dir, 'log.json')
    # with open(log_file, 'w') as f:
    #     log_data = {
    #         'input_tokens_t': total_input_tokens_t,
    #         'output_tokens_t': total_output_tokens_t,
    #         'input_tokens_v': total_input_tokens_v,
    #         'output_tokens_v': total_output_tokens_v,
    #         'time_taken': time_taken,
    #         'institution_logo': institution_logo_path,
    #         'conference_logo': conference_logo_path,
    #     }
    #     json.dump(log_data, f, indent=4)

    # detail_log_file = os.path.join(output_dir, 'detail_log.json')
    # with open(detail_log_file, 'w') as f:
    #     json.dump(detail_log, f, indent=4)

    # print(f'\nTotal time: {time_taken:.2f} seconds')
    # print(f'Total text model tokens: {total_input_tokens_t} -> {total_output_tokens_t}')
    # print(f'Total vision model tokens: {total_input_tokens_v} -> {total_output_tokens_v}')

    # if institution_logo_path:
    #     print(f'Institution logo added: {institution_logo_path}')
    # if conference_logo_path:
    #     print(f'Conference logo added: {conference_logo_path}')