File size: 26,958 Bytes
7c08dc3 0f74dc7 7c08dc3 0f74dc7 7c08dc3 0f74dc7 7c08dc3 0f74dc7 7c08dc3 0d563bd 7c08dc3 0d563bd 7c08dc3 0d563bd 7c08dc3 0d563bd 7c08dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import os
print("Initializing...")
from PosterAgent.parse_raw import parse_raw, gen_image_and_table
from PosterAgent.gen_outline_layout import filter_image_table, gen_outline_layout_v2
from utils.wei_utils import get_agent_config, scale_to_target_area
# from PosterAgent.tree_split_layout import main_train, main_inference, get_arrangments_in_inches, split_textbox, to_inches
# from PosterAgent.gen_pptx_code import generate_poster_code
# from utils.src.utils import ppt_to_images
# from PosterAgent.gen_poster_content import gen_bullet_point_content
# from utils.ablation_utils import no_tree_get_layout
# Import refactored utilities
# from utils.logo_utils import LogoManager, add_logos_to_poster_code
# from utils.config_utils import (
# load_poster_yaml_config, extract_font_sizes, extract_colors,
# extract_vertical_alignment, extract_section_title_symbol, normalize_config_values
# )
# from utils.style_utils import apply_all_styles
# from utils.theme_utils import get_default_theme, create_theme_with_alignment, resolve_colors
# from PosterAgent.gen_beamer_code import (
# generate_beamer_poster_code,
# save_beamer_code,
# compile_beamer_to_pdf,
# convert_pptx_layout_to_beamer
# )
import argparse
import json
import time
import shutil
units_per_inch = 25
def to_inches(value_in_units, units_per_inch=72):
"""
Convert a single coordinate or dimension from 'units' to inches.
For example, if your units are 'points' (72 points = 1 inch),
then units_per_inch=72.
If your units are 'pixels' at 96 DPI, then units_per_inch=96.
"""
return value_in_units / units_per_inch
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Poster Generation Pipeline with Logo Support')
parser.add_argument('--poster_path', type=str)
parser.add_argument('--model_name_t', type=str, default='4o')
parser.add_argument('--model_name_v', type=str, default='4o')
parser.add_argument('--index', type=int, default=0)
parser.add_argument('--poster_name', type=str, default=None)
parser.add_argument('--tmp_dir', type=str, default='tmp')
parser.add_argument('--estimate_chars', action='store_true')
parser.add_argument('--max_workers', type=int, default=10)
parser.add_argument('--poster_width_inches', type=int, default=None)
parser.add_argument('--poster_height_inches', type=int, default=None)
parser.add_argument('--no_blank_detection', action='store_true', help='When overflow is severe, try this option.')
parser.add_argument('--ablation_no_tree_layout', action='store_true', help='Ablation study: no tree layout')
parser.add_argument('--ablation_no_commenter', action='store_true', help='Ablation study: no commenter')
parser.add_argument('--ablation_no_example', action='store_true', help='Ablation study: no example')
# Logo-related arguments
parser.add_argument('--conference_venue', type=str, default=None,
help='Conference name for automatic logo search (e.g., "NeurIPS", "CVPR")')
parser.add_argument('--institution_logo_path', type=str, default=None,
help='Custom path to institution logo (auto-searches from paper metadata if not provided)')
parser.add_argument('--conference_logo_path', type=str, default=None,
help='Custom path to conference logo (auto-searches if venue specified)')
parser.add_argument('--use_google_search', action='store_true',
help='Use Google Custom Search API for logo search (requires API keys in .env)')
args = parser.parse_args()
start_time = time.time()
os.makedirs(args.tmp_dir, exist_ok=True)
detail_log = {}
agent_config_t = get_agent_config(args.model_name_t)
agent_config_v = get_agent_config(args.model_name_v)
poster_name = args.poster_path.split('/')[-2].replace(' ', '_')
if args.poster_name is None:
args.poster_name = poster_name
else:
poster_name = args.poster_name
meta_json_path = args.poster_path.replace('paper.pdf', 'meta.json')
if args.poster_width_inches is not None and args.poster_height_inches is not None:
poster_width = args.poster_width_inches * units_per_inch
poster_height = args.poster_height_inches * units_per_inch
elif os.path.exists(meta_json_path):
meta_json = json.load(open(meta_json_path, 'r'))
poster_width = meta_json['width']
poster_height = meta_json['height']
else:
poster_width = 48 * units_per_inch
poster_height = 36 * units_per_inch
poster_width, poster_height = scale_to_target_area(poster_width, poster_height)
poster_width_inches = to_inches(poster_width, units_per_inch)
poster_height_inches = to_inches(poster_height, units_per_inch)
if poster_width_inches > 56 or poster_height_inches > 56:
# Work out which side is longer, then compute a single scale factor
if poster_width_inches >= poster_height_inches:
scale_factor = 56 / poster_width_inches
else:
scale_factor = 56 / poster_height_inches
poster_width_inches *= scale_factor
poster_height_inches *= scale_factor
# convert back to internal units
poster_width = poster_width_inches * units_per_inch
poster_height = poster_height_inches * units_per_inch
print(f'Poster size: {poster_width_inches} x {poster_height_inches} inches')
total_input_tokens_t, total_output_tokens_t = 0, 0
total_input_tokens_v, total_output_tokens_v = 0, 0
# Step 1: Parse the raw poster
input_token, output_token, raw_result = parse_raw(args, agent_config_t, version=2)
total_input_tokens_t += input_token
total_output_tokens_t += output_token
_, _, images, tables = gen_image_and_table(args, raw_result)
print(f'Parsing token consumption: {input_token} -> {output_token}')
parser_time_taken = time.time() - start_time
print(f'Parser time: {parser_time_taken:.2f} seconds')
detail_log['parser_time'] = parser_time_taken
parser_time = time.time()
detail_log['parser_in_t'] = input_token
detail_log['parser_out_t'] = output_token
# # Initialize LogoManager
# logo_manager = LogoManager()
# institution_logo_path = args.institution_logo_path
# conference_logo_path = args.conference_logo_path
# # Auto-detect institution from paper if not provided
# # Now using the raw_result directly instead of reading from file
# if not institution_logo_path:
# print("\n" + "="*60)
# print("🔍 AUTO-DETECTING INSTITUTION FROM PAPER")
# print("="*60)
# # Use the raw_result we already have from the parser
# if raw_result:
# print(f"📄 Using parsed paper content")
# # Extract text content from the ConversionResult object
# try:
# paper_text = raw_result.document.export_to_markdown()
# except:
# # Fallback: try to get text content in another way
# paper_text = str(raw_result)
# print("🔎 Searching for FIRST AUTHOR's institution...")
# first_author_inst = logo_manager.extract_first_author_institution(paper_text)
# if first_author_inst:
# print(f"\n✅ FIRST AUTHOR INSTITUTION: {first_author_inst}")
# print(f"🔍 Searching for logo: {first_author_inst}")
# inst_logo_path = logo_manager.get_logo_path(first_author_inst, category="institute", use_google=args.use_google_search)
# if inst_logo_path:
# institution_logo_path = str(inst_logo_path)
# print(f"✅ Institution logo found: {institution_logo_path}")
# else:
# print(f"❌ Could not find/download logo for: {first_author_inst}")
# else:
# print("❌ No first author institution detected or matched with available logos")
# else:
# print("❌ No parsed content available")
# print("="*60 + "\n")
# # Handle conference logo
# if args.conference_venue and not conference_logo_path:
# print("\n" + "="*60)
# print("🏛️ SEARCHING FOR CONFERENCE LOGO")
# print("="*60)
# print(f"📍 Conference: {args.conference_venue}")
# print(f"🔍 Searching for logo...")
# conf_logo_path = logo_manager.get_logo_path(args.conference_venue, category="conference", use_google=args.use_google_search)
# if conf_logo_path:
# conference_logo_path = str(conf_logo_path)
# print(f"✅ Conference logo found: {conference_logo_path}")
# else:
# print(f"❌ Could not find/download logo for: {args.conference_venue}")
# # Note: Web search is now handled inside get_logo_path automatically
# print("="*60 + "\n")
# Step 2: Filter unnecessary images and tables
input_token, output_token = filter_image_table(args, agent_config_t)
total_input_tokens_t += input_token
total_output_tokens_t += output_token
print(f'Filter figures token consumption: {input_token} -> {output_token}')
filter_time_taken = time.time() - parser_time
print(f'Filter time: {filter_time_taken:.2f} seconds')
detail_log['filter_time'] = filter_time_taken
filter_time = time.time()
detail_log['filter_in_t'] = input_token
detail_log['filter_out_t'] = output_token
# Step 3: Generate outline
input_token, output_token, panels, figures = gen_outline_layout_v2(args, agent_config_t)
total_input_tokens_t += input_token
total_output_tokens_t += output_token
print(f'Outline token consumption: {input_token} -> {output_token}')
outline_time_taken = time.time() - filter_time
print(f'Outline time: {outline_time_taken:.2f} seconds')
detail_log['outline_time'] = outline_time_taken
outline_time = time.time()
detail_log['outline_in_t'] = input_token
detail_log['outline_out_t'] = output_token
# if args.ablation_no_tree_layout:
# panel_arrangement, figure_arrangement, text_arrangement, input_token, output_token = no_tree_get_layout(
# poster_width,
# poster_height,
# panels,
# figures,
# agent_config_t
# )
# total_input_tokens_t += input_token
# total_output_tokens_t += output_token
# print(f'No tree layout token consumption: {input_token} -> {output_token}')
# detail_log['no_tree_layout_in_t'] = input_token
# detail_log['no_tree_layout_out_t'] = output_token
# else:
# # Step 4: Learn and generate layout
# panel_model_params, figure_model_params = main_train()
# panel_arrangement, figure_arrangement, text_arrangement = main_inference(
# panels,
# panel_model_params,
# figure_model_params,
# poster_width,
# poster_height,
# shrink_margin=3
# )
# text_arrangement_title = text_arrangement[0]
# text_arrangement = text_arrangement[1:]
# # Split the title textbox into two parts
# text_arrangement_title_top, text_arrangement_title_bottom = split_textbox(
# text_arrangement_title,
# 0.8
# )
# # Add the split textboxes back to the list
# text_arrangement = [text_arrangement_title_top, text_arrangement_title_bottom] + text_arrangement
# for i in range(len(figure_arrangement)):
# panel_id = figure_arrangement[i]['panel_id']
# panel_section_name = panels[panel_id]['section_name']
# figure_info = figures[panel_section_name]
# if 'image' in figure_info:
# figure_id = figure_info['image']
# if not figure_id in images:
# figure_path = images[str(figure_id)]['image_path']
# else:
# figure_path = images[figure_id]['image_path']
# elif 'table' in figure_info:
# figure_id = figure_info['table']
# if not figure_id in tables:
# figure_path = tables[str(figure_id)]['table_path']
# else:
# figure_path = tables[figure_id]['table_path']
# figure_arrangement[i]['figure_path'] = figure_path
# for text_arrangement_item in text_arrangement:
# num_chars = char_capacity(
# bbox=(text_arrangement_item['x'], text_arrangement_item['y'], text_arrangement_item['height'], text_arrangement_item['width'])
# )
# text_arrangement_item['num_chars'] = num_chars
# width_inch, height_inch, panel_arrangement_inches, figure_arrangement_inches, text_arrangement_inches = get_arrangments_in_inches(
# poster_width, poster_height, panel_arrangement, figure_arrangement, text_arrangement, 25
# )
# # Save to file
# tree_split_results = {
# 'poster_width': poster_width,
# 'poster_height': poster_height,
# 'poster_width_inches': width_inch,
# 'poster_height_inches': height_inch,
# 'panels': panels,
# 'panel_arrangement': panel_arrangement,
# 'figure_arrangement': figure_arrangement,
# 'text_arrangement': text_arrangement,
# 'panel_arrangement_inches': panel_arrangement_inches,
# 'figure_arrangement_inches': figure_arrangement_inches,
# 'text_arrangement_inches': text_arrangement_inches,
# }
# ============================
# ### NEW: only build a simple figure_arrangement with {panel_id, figure_path}
# ============================
# 有些项目把 images/tables 放在上游全局;若未定义,则从过滤结果 JSON 兜底加载
try:
images
except NameError:
images = json.load(open(f'<{args.model_name_t}_{args.model_name_v}>_images_and_tables/{args.poster_name}_images_filtered.json', 'r'))
try:
tables
except NameError:
tables = json.load(open(f'<{args.model_name_t}_{args.model_name_v}>_images_and_tables/{args.poster_name}_tables_filtered.json', 'r'))
# 建立 section_name -> panel_id 的映射
section2pid = {p['section_name']: p['panel_id'] for p in panels}
# 生成精简后的 figure_arrangement:只保留 panel_id 与 figure_path
simple_figure_arrangement = []
for section_name, f in figures.items():
if section_name not in section2pid:
continue
pid = section2pid[section_name]
fig_path = None
if 'image' in f:
fid = str(f['image'])
info = images.get(fid) or images.get(str(fid)) or {}
fig_path = info.get('image_path')
elif 'table' in f:
tid = str(f['table'])
info = tables.get(tid) or tables.get(str(tid)) or {}
fig_path = info.get('table_path')
if fig_path: # 只收集有路径的
simple_figure_arrangement.append({
'panel_id': pid,
'figure_path': fig_path,
})
# ============================
# ### REMOVED: no layout/train/text capacity/inches conversion
# - 删除 args.ablation_no_tree_layout 分支
# - 删除 main_train() / main_inference()
# - 删除为 figure_arrangement[i] 补 figure_path 的循环
# - 删除 text_arrangement / char_capacity / get_arrangments_in_inches
# ============================
# Save to file (只保留 panels + figure_arrangement)
tree_split_results = {
'panels': panels,
'figure_arrangement': simple_figure_arrangement,
}
os.makedirs('tree_splits', exist_ok=True)
with open(f'tree_splits/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_tree_split_{args.index}.json', 'w') as f:
json.dump(tree_split_results, f, indent=4)
layout_time_taken = time.time() - outline_time
print(f'Layout time: {layout_time_taken:.2f} seconds')
detail_log['layout_time'] = layout_time_taken
layout_time = time.time()
# # === Configuration Loading ===
# print("\n📋 Loading configuration from YAML files...", flush=True)
# yaml_cfg = load_poster_yaml_config(args.poster_path)
# # Extract configuration values
# bullet_fs, title_fs, poster_title_fs, poster_author_fs = extract_font_sizes(yaml_cfg)
# title_text_color, title_fill_color, main_text_color, main_text_fill_color = extract_colors(yaml_cfg)
# section_title_vertical_align = extract_vertical_alignment(yaml_cfg)
# section_title_symbol = extract_section_title_symbol(yaml_cfg)
# # Normalize configuration values
# bullet_fs, title_fs, poster_title_fs, poster_author_fs, \
# title_text_color, title_fill_color, main_text_color, main_text_fill_color = normalize_config_values(
# bullet_fs, title_fs, poster_title_fs, poster_author_fs,
# title_text_color, title_fill_color, main_text_color, main_text_fill_color
# )
# # Store configuration in args
# setattr(args, 'bullet_font_size', bullet_fs)
# setattr(args, 'section_title_font_size', title_fs)
# setattr(args, 'poster_title_font_size', poster_title_fs)
# setattr(args, 'poster_author_font_size', poster_author_fs)
# setattr(args, 'title_text_color', title_text_color)
# setattr(args, 'title_fill_color', title_fill_color)
# setattr(args, 'main_text_color', main_text_color)
# setattr(args, 'main_text_fill_color', main_text_fill_color)
# setattr(args, 'section_title_vertical_align', section_title_vertical_align)
# # Step 5: Generate content
# print(f"\n✍️ Generating poster content (max_workers={args.max_workers})...", flush=True)
# # --- Step 1: 检查缓存 ---
# content_cache_path = f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_bullet_point_content_{args.index}.json'
# if os.path.exists(content_cache_path):
# print(f"🧩 Cache found: {content_cache_path}")
# print("⚡ Skipping model generation, loading from cache...")
# bullet_content = json.load(open(content_cache_path, 'r'))
# input_token_t = output_token_t = input_token_v = output_token_v = 0
# else:
# print("🧠 Running model to generate poster content...")
# input_token_t, output_token_t, input_token_v, output_token_v = gen_bullet_point_content(
# args, agent_config_t, agent_config_v, tmp_dir=args.tmp_dir
# )
# bullet_content = json.load(open(content_cache_path, 'r'))
# input_token_t, output_token_t, input_token_v, output_token_v = gen_bullet_point_content(args, agent_config_t, agent_config_v, tmp_dir=args.tmp_dir)
# total_input_tokens_t += input_token
# total_output_tokens_t += output_token
# total_input_tokens_v += input_token_v
# total_output_tokens_v += output_token_v
# print(f'Content generation token consumption T: {input_token_t} -> {output_token_t}')
# print(f'Content generation token consumption V: {input_token_v} -> {output_token_v}')
# content_time_taken = time.time() - layout_time
# print(f'Content generation time: {content_time_taken:.2f} seconds')
# detail_log['content_time'] = content_time_taken
# content_time = time.time()
# bullet_content = json.load(open(f'contents/<{args.model_name_t}_{args.model_name_v}>_{args.poster_name}_bullet_point_content_{args.index}.json', 'r'))
# detail_log['content_in_t'] = input_token_t
# detail_log['content_out_t'] = output_token_t
# detail_log['content_in_v'] = input_token_v
# detail_log['content_out_v'] = output_token_v
# # === Style Application ===
# print("\n🎨 Applying styles and colors...", flush=True)
# # Resolve colors with fallbacks
# final_title_text_color, final_title_fill_color, final_main_text_color, final_main_text_fill_color = resolve_colors(
# getattr(args, 'title_text_color', None),
# getattr(args, 'title_fill_color', None),
# getattr(args, 'main_text_color', None),
# getattr(args, 'main_text_fill_color', None)
# )
# # Apply all styles in one go
# bullet_content = apply_all_styles(
# bullet_content,
# title_text_color=final_title_text_color,
# title_fill_color=final_title_fill_color,
# main_text_color=final_main_text_color,
# main_text_fill_color=final_main_text_fill_color,
# section_title_symbol=section_title_symbol,
# main_text_font_size=bullet_fs
# )
# # === Poster Generation ===
# # print("\n🎯 Generating PowerPoint code...", flush=True)
# # Create theme with alignment
# base_theme = get_default_theme()
# theme_with_alignment = create_theme_with_alignment(
# base_theme,
# getattr(args, 'section_title_vertical_align', None)
# )
# # poster_code = generate_poster_code(
# # panel_arrangement_inches,
# # text_arrangement_inches,
# # figure_arrangement_inches,
# # presentation_object_name='poster_presentation',
# # slide_object_name='poster_slide',
# # utils_functions=utils_functions,
# # slide_width=width_inch,
# # slide_height=height_inch,
# # img_path=None,
# # save_path=f'{args.tmp_dir}/poster.pptx',
# # visible=False,
# # content=bullet_content,
# # theme=theme_with_alignment,
# # tmp_dir=args.tmp_dir,
# # )
# print("\n🎯 Generating Beamer poster (LaTeX)...", flush=True)
# # --- 1. 提取 poster_info ---
# poster_info = {
# "title": args.poster_name,
# "author": "AutoGen",
# "institute": "Auto-detected Institution"
# }
# if isinstance(bullet_content, list) and len(bullet_content) > 0:
# first_section = bullet_content[0]
# if isinstance(first_section, dict):
# if "poster_title" in first_section:
# poster_info["title"] = first_section["poster_title"]
# elif "title" in first_section:
# poster_info["title"] = first_section["title"]
# --- 2. 构造 Beamer 数据结构 ---
# layout_data = {
# "text_arrangement": text_arrangement,
# "figure_arrangement": figure_arrangement
# }
# beamer_data = convert_pptx_layout_to_beamer(layout_data)
# 将 bullet_content 映射进 sections
# for i, section in enumerate(beamer_data["sections"]):
# if i < len(bullet_content):
# section_data = bullet_content[i]
# if isinstance(section_data, dict):
# section["content"] = section_data.get("textbox1") or section_data.get("title") or json.dumps(section_data)
# else:
# section["content"] = str(section_data)
# --- 3. 生成 LaTeX 文件 ---
# poster_info = {k: (str(v) if not isinstance(v, str) else v) for k, v in poster_info.items()}
# beamer_code = generate_beamer_poster_code(
# beamer_data["sections"],
# beamer_data["figures"],
# poster_info,
# width_cm=poster_width_inches * 2.54,
# height_cm=poster_height_inches * 2.54,
# theme="Madrid",
# output_path=f"{args.tmp_dir}/{poster_name}.tex"
# )
# save_beamer_code(beamer_code, f"{args.tmp_dir}/{poster_name}.tex")
# --- 4. 编译为 PDF ---
# output_dir = f'<{args.model_name_t}_{args.model_name_v}>_generated_beamer_posters/{args.poster_path.replace("paper.pdf", "")}'
# compile_beamer_to_pdf(f"{args.tmp_dir}/{poster_name}.tex", output_dir=args.tmp_dir)
# pdf_path = os.path.join(args.tmp_dir, f"{poster_name}.pdf")
# os.makedirs(output_dir, exist_ok=True)
# os.rename(pdf_path, os.path.join(output_dir, f"{poster_name}.pdf"))
# print(f"✅ Beamer poster PDF saved to {output_dir}")
# Add logos to the poster
# print("\n🖼️ Adding logos to poster...", flush=True)
# poster_code = add_logos_to_poster_code(
# poster_code,
# width_inch,
# height_inch,
# institution_logo_path=institution_logo_path,
# conference_logo_path=conference_logo_path
# )
# output, err = run_code(poster_code)
# if err is not None:
# raise RuntimeError(f'Error in generating PowerPoint: {err}')
# # Step 8: Create a folder in the output directory
# output_dir = f'<{args.model_name_t}_{args.model_name_v}>_generated_posters/{args.poster_path.replace("paper.pdf", "")}'
# os.makedirs(output_dir, exist_ok=True)
# # Copy logos to output directory for reference
# logos_dir = os.path.join(output_dir, 'logos')
# if institution_logo_path or conference_logo_path:
# os.makedirs(logos_dir, exist_ok=True)
# if institution_logo_path and os.path.exists(institution_logo_path):
# shutil.copy2(institution_logo_path, os.path.join(logos_dir, 'institution_logo' + os.path.splitext(institution_logo_path)[1]))
# if conference_logo_path and os.path.exists(conference_logo_path):
# shutil.copy2(conference_logo_path, os.path.join(logos_dir, 'conference_logo' + os.path.splitext(conference_logo_path)[1]))
# # Step 9: Move poster.pptx to the output directory
# pptx_path = os.path.join(output_dir, f'{poster_name}.pptx')
# os.rename(f'{args.tmp_dir}/poster.pptx', pptx_path)
# print(f'Poster PowerPoint saved to {pptx_path}')
# # Step 10: Convert the PowerPoint to images
# ppt_to_images(pptx_path, output_dir)
# print(f'Poster images saved to {output_dir}')
# end_time = time.time()
# time_taken = end_time - start_time
# render_time_taken = time.time() - content_time
# print(f'Render time: {render_time_taken:.2f} seconds')
# detail_log['render_time'] = render_time_taken
# # log
# log_file = os.path.join(output_dir, 'log.json')
# with open(log_file, 'w') as f:
# log_data = {
# 'input_tokens_t': total_input_tokens_t,
# 'output_tokens_t': total_output_tokens_t,
# 'input_tokens_v': total_input_tokens_v,
# 'output_tokens_v': total_output_tokens_v,
# 'time_taken': time_taken,
# 'institution_logo': institution_logo_path,
# 'conference_logo': conference_logo_path,
# }
# json.dump(log_data, f, indent=4)
# detail_log_file = os.path.join(output_dir, 'detail_log.json')
# with open(detail_log_file, 'w') as f:
# json.dump(detail_log, f, indent=4)
# print(f'\nTotal time: {time_taken:.2f} seconds')
# print(f'Total text model tokens: {total_input_tokens_t} -> {total_output_tokens_t}')
# print(f'Total vision model tokens: {total_input_tokens_v} -> {total_output_tokens_v}')
# if institution_logo_path:
# print(f'Institution logo added: {institution_logo_path}')
# if conference_logo_path:
# print(f'Conference logo added: {conference_logo_path}')
|