File size: 25,153 Bytes
7c08dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
from lxml import etree
import os
import copy
import glob
import numpy as np
from sklearn.linear_model import LinearRegression, LogisticRegression
import matplotlib.pyplot as plt
import matplotlib.patches as patches
def parse_xml_with_recovery(xml_file_path):
parser = etree.XMLParser(recover=True)
tree = etree.parse(xml_file_path, parser)
return tree.getroot()
def parse_poster_xml(xml_file):
"""
Parse an XML describing a single poster layout, e.g.:
<Poster Width="685" Height="968">
<Panel left="5" right="160" width="674" height="123">
<Text>Introduction</Text>
<Figure left="567" right="178" width="81" height="99" no="1" ... />
</Panel>
...
</Poster>
Returns a dict with:
{
'poster_width': float,
'poster_height': float,
'panels': [
{
'x': float,
'y': float,
'width': float,
'height': float,
'text_blocks': [string, string, ...],
'figure_blocks': [(fx, fy, fw, fh), ...]
},
...
]
}
"""
root = parse_xml_with_recovery(xml_file)
# Poster dimensions
poster_w = float(root.get("Width", "1"))
poster_h = float(root.get("Height", "1"))
panels_data = []
# Iterate <Panel> elements
for panel_node in root.findall("Panel"):
x = float(panel_node.get("left", "0"))
y = float(panel_node.get("right", "0"))
w = float(panel_node.get("width", "0"))
h = float(panel_node.get("height", "0"))
# Gather text blocks
text_blocks = []
for text_node in panel_node.findall("Text"):
txt = text_node.text or ""
txt = txt.strip()
if txt:
text_blocks.append(txt)
# Gather figure blocks
figure_blocks = []
for fig_node in panel_node.findall("Figure"):
fx = float(fig_node.get("left", "0"))
fy = float(fig_node.get("right", "0"))
fw = float(fig_node.get("width", "0"))
fh = float(fig_node.get("height", "0"))
figure_blocks.append((fx, fy, fw, fh))
panel_info = {
"x": x,
"y": y,
"width": w,
"height": h,
"text_blocks": text_blocks,
"figure_blocks": figure_blocks
}
panels_data.append(panel_info)
return {
"poster_width": poster_w,
"poster_height": poster_h,
"panels": panels_data
}
def compute_panel_attributes(poster_data):
"""
Given poster_data, compute:
- tp: ratio of text length for each panel
- gp: ratio of figure area for each panel
- sp: ratio of panel area to total poster area
- rp: aspect ratio (width / height)
Returns a list of dicts, each:
{
'tp': float,
'gp': float,
'sp': float,
'rp': float
}
"""
poster_w = poster_data["poster_width"]
poster_h = poster_data["poster_height"]
panels = poster_data["panels"]
poster_area = max(poster_w * poster_h, 1.0) # avoid zero
# 1) Compute total text length across all panels
# 2) Compute total figure area across all panels
total_text_length = 0
total_figure_area = 0
# We'll store partial info about each panel so we don't parse multiple times
panel_list = []
for p in panels:
# Combine all text
panel_text_joined = " ".join(p["text_blocks"])
panel_text_len = len(panel_text_joined)
# Sum area of figure blocks
panel_fig_area = 0.0
for (fx, fy, fw, fh) in p["figure_blocks"]:
panel_fig_area += (fw * fh)
panel_list.append({
"x": p["x"],
"y": p["y"],
"width": p["width"],
"height": p["height"],
"text_len": panel_text_len,
"fig_area": panel_fig_area
})
total_text_length += panel_text_len
total_figure_area += panel_fig_area
# Avoid divide by zero
if total_text_length < 1:
total_text_length = 1
if total_figure_area < 1e-9:
total_figure_area = 1e-9
# 3) Compute attributes
results = []
for pinfo in panel_list:
pw = pinfo["width"]
ph = pinfo["height"]
panel_area = pw * ph
sp = panel_area / poster_area # fraction of total area
rp = (pw / ph) if ph > 0 else 1.0
tp = pinfo["text_len"] / float(total_text_length)
gp = pinfo["fig_area"] / float(total_figure_area)
results.append({
"tp": tp,
"gp": gp,
"sp": sp,
"rp": rp
})
return results
def train_panel_attribute_inference(panel_records):
"""
The training data `panel_records` is a list of dicts, each containing:
{
'tp': float,
'gp': float,
'sp': float, # (label for the sp regression)
'rp': float # (label for the rp regression)
}
We'll train two linear regressors:
sp = w_s * [tp, gp, 1]
rp = w_r * [tp, gp, 1]
Returns dict with learned parameters:
{
'w_s': array, # shape (3,) => sp = w_s[0]*tp + w_s[1]*gp + w_s[2]
'sigma_s': float, # variance of residual for sp
'w_r': array,
'sigma_r': float
}
"""
# Build data arrays
X_list = []
sp_list = []
rp_list = []
for rec in panel_records:
tp = rec['tp']
gp = rec['gp']
sp = rec['sp']
rp = rec['rp']
# X = [tp, gp, 1]
X_list.append([tp, gp, 1.0])
sp_list.append(sp)
rp_list.append(rp)
X_array = np.array(X_list, dtype=float)
y_sp = np.array(sp_list, dtype=float)
y_rp = np.array(rp_list, dtype=float)
# Fit linear regression for sp
linreg_sp = LinearRegression(fit_intercept=False)
linreg_sp.fit(X_array, y_sp)
w_s = linreg_sp.coef_
pred_sp = linreg_sp.predict(X_array)
residual_sp = y_sp - pred_sp
sigma_s = np.var(residual_sp, ddof=1)
# Fit linear regression for rp
linreg_rp = LinearRegression(fit_intercept=False)
linreg_rp.fit(X_array, y_rp)
w_r = linreg_rp.coef_
pred_rp = linreg_rp.predict(X_array)
residual_rp = y_rp - pred_rp
sigma_r = np.var(residual_rp, ddof=1)
model_params = {
"w_s": w_s,
"sigma_s": sigma_s,
"w_r": w_r,
"sigma_r": sigma_r
}
return model_params
def parse_poster_xml_for_figures(xml_path):
root = parse_xml_with_recovery(xml_path)
poster_w = float(root.get("Width", "1"))
poster_h = float(root.get("Height", "1"))
poster_area = poster_w * poster_h
records = []
for panel in root.findall("Panel"):
px, py = float(panel.get("left", 0)), float(panel.get("right", 0))
pw, ph = float(panel.get("width", 1)), float(panel.get("height", 1))
panel_area = pw * ph
sp = panel_area / poster_area
rp = pw / ph if ph > 0 else 1.0
lp = sum(len(t.text.strip()) for t in panel.findall("Text") if t.text)
for fig in panel.findall("Figure"):
fx, fy = float(fig.get("left", 0)), float(fig.get("right", 0))
fw, fh = float(fig.get("width", 1)), float(fig.get("height", 1))
sg = (fw * fh) / poster_area
rg = fw / fh if fh > 0 else 1.0
ug = fw / pw if pw > 0 else 0.1
panel_center_x = px + pw / 2
fig_center_x = fx + fw / 2
delta_x = fig_center_x - panel_center_x
hg = 0 if delta_x < -pw / 6 else (2 if delta_x > pw / 6 else 1)
record = {"sp": sp, "rp": rp, "lp": lp, "sg": sg, "rg": rg, "hg": hg, "ug": ug}
records.append(record)
return records
def train_figure_model(figure_records):
X_hg, y_hg, X_ug, y_ug = [], [], [], []
for r in figure_records:
feats = [r["sp"], r["lp"], r["sg"], 1.0]
X_hg.append(feats)
y_hg.append(r["hg"])
X_ug.append(feats)
y_ug.append(r["ug"])
clf_hg = LogisticRegression(multi_class="multinomial", solver="lbfgs", fit_intercept=False)
clf_hg.fit(X_hg, y_hg)
lin_ug = LinearRegression(fit_intercept=False)
lin_ug.fit(X_ug, y_ug)
residuals = y_ug - lin_ug.predict(X_ug)
sigma_u = np.var(residuals, ddof=1)
return {
"clf_hg": clf_hg,
"w_u": lin_ug.coef_,
"sigma_u": sigma_u
}
def main_train():
poster_dataset_path = 'assets/poster_data/Train'
# loop through all folders in the dataset
xml_files = []
for folder in os.listdir(poster_dataset_path):
folder_path = os.path.join(poster_dataset_path, folder)
if os.path.isdir(folder_path):
# find all XML files in this folder
xml_files.extend(glob.glob(os.path.join(folder_path, "*.txt")))
all_panel_records = []
for xml_file in xml_files:
poster_data = parse_poster_xml(xml_file)
# compute tp, gp, sp, rp
panel_attrs = compute_panel_attributes(poster_data)
# each panel_attrs entry is {tp, gp, sp, rp}
all_panel_records.extend(panel_attrs)
all_figure_records = []
for xml_path in xml_files:
recs = parse_poster_xml_for_figures(xml_path)
all_figure_records.extend(recs)
panel_model_params = train_panel_attribute_inference(all_panel_records)
figure_model_params = train_figure_model(all_figure_records)
return panel_model_params, figure_model_params
def place_text_and_figures_exact(panel_dict, figure_model_params, section_title_height=32):
"""
Lay out text and figure boxes inside a panel.
The figure’s aspect ratio (width / height) is now enforced strictly:
• width ≤ panel width
• height ≤ 0.60 × panel height (empirical upper‑bound you already used)
• width / height == panel_dict["figure_aspect"]
"""
# ---------------- Constants used for text layout -----------------
char_width_px = 7
line_height_px = 16
chars_per_line = max(int(panel_dict["width"] / char_width_px), 1)
total_lines_text = np.ceil(panel_dict["text_len"] / chars_per_line)
total_text_height = total_lines_text * line_height_px
x_p, y_p = panel_dict["x"], panel_dict["y"]
w_p, h_p = panel_dict["width"], panel_dict["height"]
figure_boxes, text_boxes = [], []
panel_name_lower = panel_dict["panel_name"].lower()
has_title_in_name = "title" in panel_name_lower
# -------------------------------------------------------
# Helper to build a text‑box dict
# -------------------------------------------------------
def make_text_box(panel_id, x, y, width, height, textbox_id, textbox_name):
return {
"panel_id": panel_id,
"x": float(x),
"y": float(y),
"width": float(width),
"height": float(height),
"textbox_id": textbox_id,
"textbox_name": textbox_name,
}
# -----------------------------------------------------------------------
# Case 1 — no figure in this panel
# -----------------------------------------------------------------------
if panel_dict["figure_size"] <= 0:
if has_title_in_name:
text_boxes.append(
make_text_box(panel_dict["panel_id"], x_p, y_p, w_p, h_p,
textbox_id=0,
textbox_name=f'p<{panel_dict["panel_name"]}>_t0')
)
else:
title_h = min(section_title_height, h_p)
text_boxes.extend([
make_text_box(panel_dict["panel_id"], x_p, y_p, w_p, title_h,
textbox_id=0,
textbox_name=f'p<{panel_dict["panel_name"]}>_t0'),
make_text_box(panel_dict["panel_id"], x_p, y_p + title_h, w_p, h_p - title_h,
textbox_id=1,
textbox_name=f'p<{panel_dict["panel_name"]}>_t1'),
])
return text_boxes, figure_boxes # early‑return (simpler branch)
# -----------------------------------------------------------------------
# Case 2 — there *is* a figure
# -----------------------------------------------------------------------
# 1. Sample horizontal‑alignment class (hg) and raw width fraction (ug)
feat = np.array([panel_dict["sp"],
panel_dict["text_len"],
panel_dict["figure_size"],
1.0]).reshape(1, -1)
clf_hg = figure_model_params["clf_hg"]
hg_sample = int(np.argmax(clf_hg.predict_proba(feat)[0]))
mean_ug = float(np.dot(figure_model_params["w_u"], feat.flatten()))
sigma_u = float(np.sqrt(figure_model_params["sigma_u"]))
ug_sample = float(np.clip(np.random.normal(mean_ug, sigma_u), 0.10, 0.80)) # 10‑80 % of width
# 2. **Size the figure while *preserving* aspect ratio**
aspect = float(panel_dict["figure_aspect"]) # width / height
fig_w = ug_sample * w_p # preliminary width
fig_h = fig_w / aspect
max_fig_h = 0.60 * h_p # same limit you had
if fig_h > max_fig_h: # too tall → scale down
scale = max_fig_h / fig_h
fig_w *= scale
fig_h = max_fig_h # (ratio still intact)
# 3. Horizontal placement
if hg_sample == 0: # left
fig_x = x_p
elif hg_sample == 2: # right
fig_x = x_p + w_p - fig_w
else: # center
fig_x = x_p + 0.5 * (w_p - fig_w)
# Vertical centering
fig_y = y_p + 0.5 * (h_p - fig_h)
# 4. Split text into “top” and “bottom” areas around the figure
top_text_h = (fig_y - y_p)
bottom_text_h = (y_p + h_p) - (fig_y + fig_h)
# --- build top‑text boxes
if has_title_in_name:
text_boxes.append(
make_text_box(panel_dict["panel_id"], x_p, y_p, w_p, top_text_h,
textbox_id=0,
textbox_name=f'p<{panel_dict["panel_name"]}>_t0')
)
next_id = 1
else:
title_h = min(section_title_height, top_text_h)
text_boxes.extend([
make_text_box(panel_dict["panel_id"], x_p, y_p, w_p, title_h,
textbox_id=0,
textbox_name=f'p<{panel_dict["panel_name"]}>_t0'),
make_text_box(panel_dict["panel_id"], x_p, y_p + title_h, w_p, top_text_h - title_h,
textbox_id=1,
textbox_name=f'p<{panel_dict["panel_name"]}>_t1'),
])
next_id = 2
# --- bottom text box
text_boxes.append(
make_text_box(panel_dict["panel_id"], x_p, fig_y + fig_h, w_p, bottom_text_h,
textbox_id=next_id,
textbox_name=f'p<{panel_dict["panel_name"]}>_t{next_id}')
)
# 5. Figure box
figure_boxes.append({
"panel_id": panel_dict["panel_id"],
"x": float(fig_x),
"y": float(fig_y),
"width": float(fig_w),
"height": float(fig_h),
"figure_id": 0,
"figure_name": f'p<{panel_dict["panel_name"]}>_f0',
})
return text_boxes, figure_boxes
def to_inches(value_in_units, units_per_inch=72):
"""
Convert a single coordinate or dimension from 'units' to inches.
For example, if your units are 'points' (72 points = 1 inch),
then units_per_inch=72.
If your units are 'pixels' at 96 DPI, then units_per_inch=96.
"""
return value_in_units / units_per_inch
def from_inches(value_in_inches, units_per_inch=72):
"""
Convert from inches back to the original 'units'.
"""
return value_in_inches * units_per_inch
def softmax(logits):
s = sum(np.exp(logits))
return [np.exp(l)/s for l in logits]
def infer_panel_attrs(panel_model, tp, gp):
# sp = w_s dot [tp, gp, 1]
# rp = w_r dot [tp, gp, 1]
vec = np.array([tp, gp, 1.0])
w_s = panel_model["w_s"]
w_r = panel_model["w_r"]
sp = np.dot(w_s, vec)
rp = np.dot(w_r, vec)
# clamp
sp = max(sp, 0.01)
rp = max(rp, 0.05)
return sp, rp
def panel_layout_generation(panels, x, y, w, h):
# If only 1 panel, place it entirely
if len(panels) == 1:
p = panels[0]
cur_rp = (w/h) if h>1e-9 else p["rp"]
loss = abs(p["rp"] - cur_rp)
arrangement = [{
"panel_name": p["section_name"],
"panel_id": p["panel_id"],
"x": x, "y": y,
"width": w, "height": h
}]
return loss, arrangement
best_loss = float('inf')
best_arr = []
total_sp = sum(pp["sp"] for pp in panels)
n = len(panels)
for i in range(1, n):
subset1 = panels[:i]
subset2 = panels[i:]
sp1 = sum(pp["sp"] for pp in subset1)
ratio = sp1 / total_sp
# horizontal
h_top = ratio * h
if 0 < h_top < h:
l1, a1 = panel_layout_generation(subset1, x, y, w, h_top)
l2, a2 = panel_layout_generation(subset2, x, y + h_top, w, h - h_top)
if (l1 + l2) < best_loss:
best_loss = l1 + l2
best_arr = a1 + a2
# vertical
w_left = ratio * w
if 0 < w_left < w:
l1, a1 = panel_layout_generation(subset1, x, y, w_left, h)
l2, a2 = panel_layout_generation(subset2, x + w_left, y, w - w_left, h)
if (l1 + l2) < best_loss:
best_loss = l1 + l2
best_arr = a1 + a2
return best_loss, best_arr
def split_textbox(textbox, ratio):
"""
Splits a textbox dictionary horizontally into two parts.
Parameters:
textbox (dict): A dictionary with the keys
'panel_id', 'x', 'y', 'width', 'height', 'textbox_id', 'textbox_name'
ratio (float or int): Ratio of top height to bottom height.
For example, if ratio is 3, then:
top_height = (3/4) * height
bottom_height = (1/4) * height
Returns:
tuple: Two dictionaries corresponding to the top and bottom split textboxes.
"""
# Calculate the new heights
total_ratio = ratio + 1 # because the ratio represents top:bottom as (ratio):(1)
top_height = textbox['height'] * ratio / total_ratio
bottom_height = textbox['height'] * 1 / total_ratio
# Derive the base textbox name by splitting off the existing _t suffix if present.
# This assumes the original textbox_name ends with "_t<number>".
base_name = textbox['textbox_name'].rsplit('_t', 1)[0]
# Create the top textbox dictionary
top_box = dict(textbox) # make a shallow copy
top_box['height'] = top_height
# y remains the same for the top textbox
top_box['textbox_name'] = f"{base_name}_t0" # rename with _t0
# Create the bottom textbox dictionary
bottom_box = dict(textbox) # make a shallow copy
bottom_box['y'] = textbox['y'] + top_height # adjust the y position
bottom_box['height'] = bottom_height
bottom_box['textbox_name'] = f"{base_name}_t1" # rename with _t1
return top_box, bottom_box
def generate_constrained_layout(paper_panels, poster_w, poster_h, title_height_ratio=0.1):
# Find title panel explicitly
try:
title_panel = next(p for p in paper_panels if ('title' in p["section_name"].lower()))
other_panels = [p for p in paper_panels if ('title' not in p["section_name"].lower())]
except StopIteration:
print('Oops, no title found, please try again.')
raise
title_h = poster_h * title_height_ratio
title_layout = {
"panel_name": title_panel["section_name"],
"panel_id": title_panel["panel_id"],
"x": 0, "y": 0,
"width": poster_w, "height": title_h
}
# Generate recursive layout on remaining space for other panels
layout_loss, remaining_layout = panel_layout_generation(
other_panels,
x=0, y=title_h,
w=poster_w, h=poster_h - title_h
)
# Combine title panel with others
complete_layout = [title_layout] + remaining_layout
return layout_loss, complete_layout
def main_inference(
paper_panels,
panel_model_params,
figure_model_params,
poster_width=1200,
poster_height=800,
shrink_margin=0
):
for p in paper_panels:
sp, rp = infer_panel_attrs(panel_model_params, p["tp"], p["gp"])
p["sp"] = sp
p["rp"] = rp
layout_loss, panel_arrangement = generate_constrained_layout(paper_panels, poster_width, poster_height, title_height_ratio=0.1)
print("Panel layout cost:", layout_loss)
for p in panel_arrangement:
print("Panel:", p)
panel_map = {}
for p in paper_panels:
panel_map[p["panel_id"]] = p
final_panels = []
for pa in panel_arrangement:
# Merge bounding box with the original sp,rp data
pid = pa["panel_id"]
merged_panel = {
"panel_id": pid,
"panel_name": pa['panel_name'],
"x": pa["x"] + shrink_margin,
"y": pa["y"] + shrink_margin,
"width": pa["width"] - 2 * shrink_margin,
"height": pa["height"] - 2 * shrink_margin,
"sp": panel_map[pid]["sp"],
"rp": panel_map[pid]["rp"],
"text_len": panel_map[pid]["text_len"],
"figure_size": panel_map[pid]["figure_size"],
"figure_aspect": panel_map[pid]["figure_aspect"]
}
final_panels.append(merged_panel)
text_arrangement = []
figure_arrangement = []
for p in final_panels:
text_boxes, fig_boxes = place_text_and_figures_exact(p, figure_model_params)
text_arrangement.extend(text_boxes) # text arrangement
figure_arrangement.extend(fig_boxes) # figure arrangement
return panel_arrangement, figure_arrangement, text_arrangement
def visualize_complete_layout(
panels, text_boxes, figure_boxes, poster_width, poster_height
):
fig, ax = plt.subplots(figsize=(12,8))
ax.set_xlim(0, poster_width)
ax.set_ylim(0, poster_height)
ax.set_aspect('equal')
# Draw panels
for panel in panels:
rect = patches.Rectangle(
(panel["x"], panel["y"]), panel["width"], panel["height"],
linewidth=1, edgecolor='black', facecolor='none'
)
ax.add_patch(rect)
ax.text(
panel["x"] + 5, panel["y"] + panel["height"] - 5,
f'Panel {panel["panel_id"]}', fontsize=8, va='top', color='black'
)
# Draw text boxes
for txt in text_boxes:
rect = patches.Rectangle(
(txt["x"], txt["y"]), txt["width"], txt["height"],
linewidth=1, edgecolor='green', linestyle='-.', facecolor='none'
)
ax.add_patch(rect)
ax.text(
txt["x"] + 2, txt["y"] + txt["height"] - 2,
f'Text {txt["panel_id"]}', fontsize=7, color='green', va='top'
)
# Draw figures
for fig_box in figure_boxes:
rect = patches.Rectangle(
(fig_box["x"], fig_box["y"]), fig_box["width"], fig_box["height"],
linewidth=1, edgecolor='blue', linestyle='--', facecolor='none'
)
ax.add_patch(rect)
ax.text(
fig_box["x"] + 2, fig_box["y"] + 2,
f'Fig {fig_box["panel_id"]}', fontsize=7, color='blue', va='bottom'
)
plt.gca().invert_yaxis() # optional: invert y-axis if needed
plt.show()
def get_arrangments_in_inches(
width,
height,
panel_arrangement,
figure_arrangement,
text_arrangement,
units_per_inch=72
):
panel_arrangement_inches = copy.deepcopy(panel_arrangement)
figure_arrangement_inches = copy.deepcopy(figure_arrangement)
text_arrangement_inches = copy.deepcopy(text_arrangement)
for p in panel_arrangement_inches:
p["x"] = to_inches(p["x"], units_per_inch)
p["y"] = to_inches(p["y"], units_per_inch)
p["width"] = to_inches(p["width"], units_per_inch)
p["height"] = to_inches(p["height"], units_per_inch)
for f in figure_arrangement_inches:
f["x"] = to_inches(f["x"], units_per_inch)
f["y"] = to_inches(f["y"], units_per_inch)
f["width"] = to_inches(f["width"], units_per_inch)
f["height"] = to_inches(f["height"], units_per_inch)
for t in text_arrangement_inches:
t["x"] = to_inches(t["x"], units_per_inch)
t["y"] = to_inches(t["y"], units_per_inch)
t["width"] = to_inches(t["width"], units_per_inch)
t["height"] = to_inches(t["height"], units_per_inch)
width_inch, height_inch = to_inches(width, units_per_inch), to_inches(height, units_per_inch)
return width_inch, height_inch, panel_arrangement_inches, figure_arrangement_inches, text_arrangement_inches |