Update classifier.py
Browse files- classifier.py +42 -79
classifier.py
CHANGED
|
@@ -4,7 +4,14 @@ import time
|
|
| 4 |
from model_loader import classifier_model
|
| 5 |
from paraphraser import paraphrase_comment
|
| 6 |
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bias_score, compute_hallucination_score
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def compute_reward_scores(original, paraphrased):
|
| 9 |
"""
|
| 10 |
Compute all reward scores for a paraphrase.
|
|
@@ -43,88 +50,44 @@ def compute_reward_scores(original, paraphrased):
|
|
| 43 |
|
| 44 |
def classify_toxic_comment(comment):
|
| 45 |
"""
|
| 46 |
-
Classify a comment
|
| 47 |
-
|
| 48 |
-
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
| 49 |
"""
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# Run inference
|
| 65 |
-
with torch.no_grad():
|
| 66 |
-
outputs = model(**inputs)
|
| 67 |
-
logits = outputs.logits
|
| 68 |
-
|
| 69 |
-
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
| 70 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
| 71 |
-
label = "Toxic" if predicted_class == 1 else "Non-Toxic"
|
| 72 |
-
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
|
| 73 |
-
label_color = "red" if label == "Toxic" else "green"
|
| 74 |
-
|
| 75 |
-
# Compute Toxicity Score (approximated as the probability of the toxic class)
|
| 76 |
-
toxicity_score = torch.softmax(logits, dim=1)[0][1].item()
|
| 77 |
-
toxicity_score = round(toxicity_score, 2)
|
| 78 |
-
|
| 79 |
-
# Simulate Bias Score (placeholder)
|
| 80 |
-
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
| 81 |
-
bias_score = round(bias_score, 2)
|
| 82 |
-
print(f"Classification took {time.time() - start_classification:.2f} seconds")
|
| 83 |
-
|
| 84 |
-
# If the comment is toxic, paraphrase it and compute essential metrics
|
| 85 |
-
paraphrased_comment = None
|
| 86 |
-
paraphrased_prediction = None
|
| 87 |
-
paraphrased_confidence = None
|
| 88 |
-
paraphrased_color = None
|
| 89 |
-
paraphrased_toxicity_score = None
|
| 90 |
-
paraphrased_bias_score = None
|
| 91 |
-
semantic_similarity = None
|
| 92 |
-
empathy_score = None
|
| 93 |
-
|
| 94 |
-
if label == "Toxic":
|
| 95 |
-
# Paraphrase the comment
|
| 96 |
-
start_paraphrase = time.time()
|
| 97 |
-
paraphrased_comment = paraphrase_comment(comment)
|
| 98 |
-
print(f"Paraphrasing took {time.time() - start_paraphrase:.2f} seconds")
|
| 99 |
-
|
| 100 |
-
# Re-evaluate the paraphrased comment
|
| 101 |
-
start_reclassification = time.time()
|
| 102 |
-
paraphrased_inputs = tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 103 |
with torch.no_grad():
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
paraphrased_confidence = torch.softmax(paraphrased_logits, dim=1)[0][paraphrased_predicted_class].item()
|
| 110 |
-
paraphrased_color = "red" if paraphrased_label == "Toxic" else "green"
|
| 111 |
-
paraphrased_toxicity_score = torch.softmax(paraphrased_logits, dim=1)[0][1].item()
|
| 112 |
-
paraphrased_toxicity_score = round(paraphrased_toxicity_score, 2)
|
| 113 |
-
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
| 114 |
-
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
| 115 |
-
print(f"Reclassification of paraphrased comment took {time.time() - start_reclassification:.2f} seconds")
|
| 116 |
|
| 117 |
-
# Compute
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
empathy_score = compute_empathy_score(paraphrased_comment)
|
| 121 |
-
print(f"Metrics computation took {time.time() - start_metrics:.2f} seconds")
|
| 122 |
|
| 123 |
-
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
f"
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from model_loader import classifier_model
|
| 5 |
from paraphraser import paraphrase_comment
|
| 6 |
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bias_score, compute_hallucination_score
|
| 7 |
+
from metrics import compute_reward_scores
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
+
def softmax(logits):
|
| 11 |
+
exp_logits = np.exp(logits - np.max(logits))
|
| 12 |
+
return exp_logits / exp_logits.sum()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
def compute_reward_scores(original, paraphrased):
|
| 16 |
"""
|
| 17 |
Compute all reward scores for a paraphrase.
|
|
|
|
| 50 |
|
| 51 |
def classify_toxic_comment(comment):
|
| 52 |
"""
|
| 53 |
+
Classify a comment for toxicity and compute additional metrics.
|
| 54 |
+
Returns a dictionary with classification results and scores.
|
|
|
|
| 55 |
"""
|
| 56 |
+
try:
|
| 57 |
+
start_time = time.time()
|
| 58 |
+
print("Starting classification...")
|
| 59 |
+
|
| 60 |
+
# Tokenize the comment
|
| 61 |
+
inputs = classifier_model.tokenizer(
|
| 62 |
+
comment,
|
| 63 |
+
return_tensors="pt",
|
| 64 |
+
truncation=True,
|
| 65 |
+
padding=True,
|
| 66 |
+
max_length=512
|
| 67 |
+
).to(classifier_model.device)
|
| 68 |
+
|
| 69 |
+
# Classify using the toxicity classifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with torch.no_grad():
|
| 71 |
+
outputs = classifier_model.model(**inputs)
|
| 72 |
+
logits = outputs.logits.cpu().numpy()[0]
|
| 73 |
+
probs = softmax(logits)
|
| 74 |
|
| 75 |
+
toxicity = probs[1] # Assuming label 1 is toxic
|
| 76 |
+
print(f"Classification took {time.time() - start_time:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
# Compute additional metrics (empathy, bias, hallucination, reward)
|
| 79 |
+
scores = compute_reward_scores(comment, comment) # Use comment as both original and paraphrase for classification
|
| 80 |
+
scores["toxicity"] = toxicity # Override toxicity with classifier result
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
print(f"Total processing time: {time.time() - start_time:.2f} seconds")
|
| 83 |
+
return scores
|
| 84 |
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"Error during classification: {str(e)}")
|
| 87 |
+
return {
|
| 88 |
+
"empathy": 0.0,
|
| 89 |
+
"toxicity": 1.0,
|
| 90 |
+
"bias": 1.0,
|
| 91 |
+
"hallucination": 1.0,
|
| 92 |
+
"reward": 0.0
|
| 93 |
+
}
|