Create model_loader.py
Browse files- model_loader.py +20 -0
model_loader.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model_loader.py
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
def load_model_and_tokenizer():
|
| 5 |
+
"""
|
| 6 |
+
Load the fine-tuned XLM-RoBERTa model and tokenizer.
|
| 7 |
+
Returns the model and tokenizer for use in classification.
|
| 8 |
+
"""
|
| 9 |
+
try:
|
| 10 |
+
model_name = "your_username/xlm-roberta-toxic-classifier" # Replace with your model repo ID
|
| 11 |
+
# If the model is local: model_name = "./model"
|
| 12 |
+
|
| 13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
return model, tokenizer
|
| 16 |
+
except Exception as e:
|
| 17 |
+
raise Exception(f"Error loading model or tokenizer: {str(e)}")
|
| 18 |
+
|
| 19 |
+
# Load the model and tokenizer once at startup
|
| 20 |
+
model, tokenizer = load_model_and_tokenizer()
|