Update classifier.py
Browse files- classifier.py +38 -2
classifier.py
CHANGED
|
@@ -3,7 +3,43 @@ import torch
|
|
| 3 |
import time
|
| 4 |
from model_loader import classifier_model
|
| 5 |
from paraphraser import paraphrase_comment
|
| 6 |
-
from metrics import compute_semantic_similarity, compute_empathy_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def classify_toxic_comment(comment):
|
| 9 |
"""
|
|
@@ -15,7 +51,7 @@ def classify_toxic_comment(comment):
|
|
| 15 |
print("Starting classification...")
|
| 16 |
|
| 17 |
if not comment.strip():
|
| 18 |
-
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None
|
| 19 |
|
| 20 |
# Access the model and tokenizer
|
| 21 |
model = classifier_model.model
|
|
|
|
| 3 |
import time
|
| 4 |
from model_loader import classifier_model
|
| 5 |
from paraphraser import paraphrase_comment
|
| 6 |
+
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bias_score, compute_hallucination_score
|
| 7 |
+
|
| 8 |
+
def compute_reward_scores(original, paraphrased):
|
| 9 |
+
"""
|
| 10 |
+
Compute all reward scores for a paraphrase.
|
| 11 |
+
Returns a dictionary with empathy, toxicity, bias, hallucination, and overall reward.
|
| 12 |
+
"""
|
| 13 |
+
try:
|
| 14 |
+
# Get toxicity from classifier
|
| 15 |
+
_, _, _, toxicity_score, bias_score, _, _, _, _, paraphrased_toxicity_score, paraphrased_bias_score, _, _ = classify_toxic_comment(paraphrased)
|
| 16 |
+
toxicity = paraphrased_toxicity_score if paraphrased_toxicity_score is not None else 0.5
|
| 17 |
+
|
| 18 |
+
# Compute other metrics
|
| 19 |
+
empathy = compute_empathy_score(paraphrased) or 0.5
|
| 20 |
+
bias = compute_bias_score(paraphrased) or 0.5
|
| 21 |
+
hallucination = compute_hallucination_score(original, paraphrased) or 0.5
|
| 22 |
+
|
| 23 |
+
# Overall reward: Weighted combination (adjust weights as needed)
|
| 24 |
+
reward = (0.4 * empathy) - (0.2 * toxicity) - (0.2 * bias) - (0.2 * hallucination)
|
| 25 |
+
reward = max(0.0, min(1.0, round(reward, 2)))
|
| 26 |
+
|
| 27 |
+
return {
|
| 28 |
+
"empathy": empathy,
|
| 29 |
+
"toxicity": toxicity,
|
| 30 |
+
"bias": bias,
|
| 31 |
+
"hallucination": hallucination,
|
| 32 |
+
"reward": reward
|
| 33 |
+
}
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error computing reward scores: {str(e)}")
|
| 36 |
+
return {
|
| 37 |
+
"empathy": 0.5,
|
| 38 |
+
"toxicity": 0.5,
|
| 39 |
+
"bias": 0.5,
|
| 40 |
+
"hallucination": 0.5,
|
| 41 |
+
"reward": 0.5
|
| 42 |
+
}
|
| 43 |
|
| 44 |
def classify_toxic_comment(comment):
|
| 45 |
"""
|
|
|
|
| 51 |
print("Starting classification...")
|
| 52 |
|
| 53 |
if not comment.strip():
|
| 54 |
+
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None
|
| 55 |
|
| 56 |
# Access the model and tokenizer
|
| 57 |
model = classifier_model.model
|