Spaces:
Configuration error
Configuration error
| # (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
| import os | |
| import torch | |
| import gguf # This needs to be the llama.cpp one specifically! | |
| import argparse | |
| from tqdm import tqdm | |
| from safetensors.torch import load_file | |
| QUANTIZATION_THRESHOLD = 1024 | |
| REARRANGE_THRESHOLD = 512 | |
| MAX_TENSOR_NAME_LENGTH = 127 | |
| # Tuple of arch_name, match_lists. | |
| # Each item in match_lists is a tuple of keys that must match. | |
| # All keys in a match_lists item must exist for the architecture to match. | |
| # The architectures are checked in order and the first successful match terminates the search. | |
| MODEL_DETECTION = ( | |
| ("flux", ( | |
| ("transformer_blocks.0.attn.norm_added_k.weight",), | |
| ("double_blocks.0.img_attn.proj.weight",), | |
| )), | |
| ("sd3", ( | |
| ("transformer_blocks.0.attn.add_q_proj.weight",), | |
| )), | |
| ("sdxl", ( | |
| ("down_blocks.0.downsamplers.0.conv.weight", "add_embedding.linear_1.weight",), | |
| ( | |
| "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", | |
| "output_blocks.2.2.conv.weight", "output_blocks.5.2.conv.weight", | |
| ), # Non-diffusers | |
| ("label_emb.0.0.weight",), | |
| )), | |
| ("sd1", ( | |
| ("down_blocks.0.downsamplers.0.conv.weight",), | |
| ( | |
| "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", "input_blocks.9.0.op.weight", | |
| "output_blocks.2.1.conv.weight", "output_blocks.5.2.conv.weight", "output_blocks.8.2.conv.weight" | |
| ), # Non-diffusers | |
| )), | |
| ) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Generate F16 GGUF files from single UNET") | |
| parser.add_argument("--src", required=True, help="Source model ckpt file.") | |
| parser.add_argument("--dst", help="Output unet gguf file.") | |
| args = parser.parse_args() | |
| if not os.path.isfile(args.src): | |
| parser.error("No input provided!") | |
| return args | |
| def load_state_dict(path): | |
| if any(path.endswith(x) for x in [".ckpt", ".pt", ".bin", ".pth"]): | |
| state_dict = torch.load(path, map_location="cpu", weights_only=True) | |
| state_dict = state_dict.get("model", state_dict) | |
| else: | |
| state_dict = load_file(path) | |
| # only keep unet with no prefix! | |
| sd = {} | |
| has_prefix = any(["model.diffusion_model." in x for x in state_dict.keys()]) | |
| for k, v in state_dict.items(): | |
| if has_prefix and "model.diffusion_model." not in k: | |
| continue | |
| if has_prefix: | |
| k = k.replace("model.diffusion_model.", "") | |
| sd[k] = v | |
| return sd | |
| def detect_arch(state_dict): | |
| for arch, match_lists in MODEL_DETECTION: | |
| for match_list in match_lists: | |
| if all(key in state_dict for key in match_list): | |
| return arch | |
| breakpoint() | |
| raise ValueError("Unknown model architecture!") | |
| def load_model(path): | |
| state_dict = load_state_dict(path) | |
| arch = detect_arch(state_dict) | |
| print(f"* Architecture detected from input: {arch}") | |
| if arch == "flux" and "transformer_blocks.0.attn.norm_added_k.weight" in state_dict: | |
| raise ValueError("The Diffusers UNET can not be used for this!") | |
| writer = gguf.GGUFWriter(path=None, arch=arch) | |
| return (writer, state_dict) | |
| def handle_tensors(args, writer, state_dict): | |
| # TODO list: | |
| # - do something about this being awful and hacky | |
| name_lengths = tuple(sorted( | |
| ((key, len(key)) for key in state_dict.keys()), | |
| key=lambda item: item[1], | |
| reverse=True, | |
| )) | |
| if not name_lengths: | |
| return | |
| max_name_len = name_lengths[0][1] | |
| if max_name_len > MAX_TENSOR_NAME_LENGTH: | |
| bad_list = ", ".join(f"{key!r} ({namelen})" for key, namelen in name_lengths if namelen > MAX_TENSOR_NAME_LENGTH) | |
| raise ValueError(f"Can only handle tensor names up to {MAX_TENSOR_NAME_LENGTH} characters. Tensors exceeding the limit: {bad_list}") | |
| for key, data in tqdm(state_dict.items()): | |
| old_dtype = data.dtype | |
| if data.dtype == torch.bfloat16: | |
| data = data.to(torch.float32).numpy() | |
| # this is so we don't break torch 2.0.X | |
| elif data.dtype in [getattr(torch, "float8_e4m3fn", "_invalid"), getattr(torch, "float8_e5m2", "_invalid")]: | |
| data = data.to(torch.float16).numpy() | |
| else: | |
| data = data.numpy() | |
| n_dims = len(data.shape) | |
| data_shape = data.shape | |
| data_qtype = getattr( | |
| gguf.GGMLQuantizationType, | |
| "BF16" if old_dtype == torch.bfloat16 else "F16" | |
| ) | |
| # get number of parameters (AKA elements) in this tensor | |
| n_params = 1 | |
| for dim_size in data_shape: | |
| n_params *= dim_size | |
| # keys to keep as max precision | |
| blacklist = { | |
| "time_embedding.", | |
| "add_embedding.", | |
| "time_in.", | |
| "txt_in.", | |
| "vector_in.", | |
| "img_in.", | |
| "guidance_in.", | |
| "final_layer.", | |
| } | |
| if old_dtype in (torch.float32, torch.bfloat16): | |
| if n_dims == 1: | |
| # one-dimensional tensors should be kept in F32 | |
| # also speeds up inference due to not dequantizing | |
| data_qtype = gguf.GGMLQuantizationType.F32 | |
| elif n_params <= QUANTIZATION_THRESHOLD: | |
| # very small tensors | |
| data_qtype = gguf.GGMLQuantizationType.F32 | |
| elif ".weight" in key and any(x in key for x in blacklist): | |
| data_qtype = gguf.GGMLQuantizationType.F32 | |
| if ( n_dims > 1 # Skip one-dimensional tensors | |
| and n_params >= REARRANGE_THRESHOLD # Only rearrange tensors meeting the size requirement | |
| and (n_params / 256).is_integer() # Rearranging only makes sense if total elements is divisible by 256 | |
| and not (data.shape[-1] / 256).is_integer() # Only need to rearrange if the last dimension is not divisible by 256 | |
| ): | |
| orig_shape = data.shape | |
| data = data.reshape(n_params // 256, 256) | |
| writer.add_array(f"comfy.gguf.orig_shape.{key}", tuple(int(dim) for dim in orig_shape)) | |
| try: | |
| data = gguf.quants.quantize(data, data_qtype) | |
| except (AttributeError, gguf.QuantError) as e: | |
| tqdm.write(f"falling back to F16: {e}") | |
| data_qtype = gguf.GGMLQuantizationType.F16 | |
| data = gguf.quants.quantize(data, data_qtype) | |
| new_name = key # do we need to rename? | |
| shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}" | |
| tqdm.write(f"{f'%-{max_name_len + 4}s' % f'{new_name}'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") | |
| writer.add_tensor(new_name, data, raw_dtype=data_qtype) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| path = args.src | |
| writer, state_dict = load_model(path) | |
| writer.add_quantization_version(gguf.GGML_QUANT_VERSION) | |
| if next(iter(state_dict.values())).dtype == torch.bfloat16: | |
| out_path = f"{os.path.splitext(path)[0]}-BF16.gguf" | |
| writer.add_file_type(gguf.LlamaFileType.MOSTLY_BF16) | |
| else: | |
| out_path = f"{os.path.splitext(path)[0]}-F16.gguf" | |
| writer.add_file_type(gguf.LlamaFileType.MOSTLY_F16) | |
| out_path = args.dst or out_path | |
| if os.path.isfile(out_path): | |
| input("Output exists enter to continue or ctrl+c to abort!") | |
| handle_tensors(path, writer, state_dict) | |
| writer.write_header_to_file(path=out_path) | |
| writer.write_kv_data_to_file() | |
| writer.write_tensors_to_file(progress=True) | |
| writer.close() | |