Spaces:
Configuration error
Configuration error
| import torch | |
| from ...sgm.models.diffusion import DiffusionEngine | |
| from ...sgm.util import instantiate_from_config | |
| import copy | |
| from ...sgm.modules.distributions.distributions import DiagonalGaussianDistribution | |
| import random | |
| from ...SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization | |
| from pytorch_lightning import seed_everything | |
| from ...SUPIR.utils.tilevae import VAEHook | |
| from ...SUPIR.util import convert_dtype | |
| from contextlib import nullcontext | |
| import comfy.model_management | |
| device = comfy.model_management.get_torch_device() | |
| class SUPIRModel(DiffusionEngine): | |
| def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| control_model = instantiate_from_config(control_stage_config) | |
| self.model.load_control_model(control_model) | |
| self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder) | |
| self.sampler_config = kwargs['sampler_config'] | |
| self.ae_dtype = convert_dtype(ae_dtype) | |
| self.model.dtype = convert_dtype(diffusion_dtype) | |
| self.p_p = p_p | |
| self.n_p = n_p | |
| def encode_first_stage(self, x): | |
| #with torch.autocast(device, dtype=self.ae_dtype): | |
| autocast_condition = (self.ae_dtype == torch.float16 or self.ae_dtype == torch.bfloat16) and not comfy.model_management.is_device_mps(device) | |
| with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=self.ae_dtype) if autocast_condition else nullcontext(): | |
| z = self.first_stage_model.encode(x) | |
| z = self.scale_factor * z | |
| return z | |
| def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False): | |
| #with torch.autocast(device, dtype=self.ae_dtype): | |
| self.first_stage_model.to(self.ae_dtype) | |
| autocast_condition = (self.model.dtype == torch.float16 or self.model.dtype == torch.bfloat16) and not comfy.model_management.is_device_mps(device) | |
| with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=self.ae_dtype) if autocast_condition else nullcontext(): | |
| if is_stage1: | |
| h = self.first_stage_model.denoise_encoder_s1(x) | |
| else: | |
| h = self.first_stage_model.denoise_encoder(x) | |
| moments = self.first_stage_model.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if use_sample: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| z = self.scale_factor * z | |
| return z | |
| def decode_first_stage(self, z): | |
| z = 1.0 / self.scale_factor * z | |
| autocast_condition = (self.ae_dtype == torch.float16 or self.ae_dtype == torch.bfloat16) and not comfy.model_management.is_device_mps(device) | |
| with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=self.ae_dtype) if autocast_condition else nullcontext(): | |
| out = self.first_stage_model.decode(z) | |
| return out.float() | |
| def batchify_denoise(self, x, is_stage1=False): | |
| ''' | |
| [N, C, H, W], [-1, 1], RGB | |
| ''' | |
| x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1) | |
| return self.decode_first_stage(x) | |
| def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1, | |
| num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False, | |
| cfg_scale_start=1.0, control_scale_start=0.0, **kwargs): | |
| ''' | |
| [N, C], [-1, 1], RGB | |
| ''' | |
| assert len(x) == len(p) | |
| assert color_fix_type in ['Wavelet', 'AdaIn', 'None'] | |
| N = len(x) | |
| if num_samples > 1: | |
| assert N == 1 | |
| N = num_samples | |
| x = x.repeat(N, 1, 1, 1) | |
| p = p * N | |
| if p_p == 'default': | |
| p_p = self.p_p | |
| if n_p == 'default': | |
| n_p = self.n_p | |
| self.sampler_config.params.num_steps = num_steps | |
| if use_linear_CFG: | |
| self.sampler_config.params.guider_config.params.scale_min = cfg_scale | |
| self.sampler_config.params.guider_config.params.scale = cfg_scale_start | |
| else: | |
| self.sampler_config.params.guider_config.params.scale_min = cfg_scale | |
| self.sampler_config.params.guider_config.params.scale = cfg_scale | |
| self.sampler_config.params.restore_cfg = restoration_scale | |
| self.sampler_config.params.s_churn = s_churn | |
| self.sampler_config.params.s_noise = s_noise | |
| self.sampler = instantiate_from_config(self.sampler_config) | |
| print("Sampler: ", self.sampler_config.target) | |
| print("sampler_config: ", self.sampler_config.params) | |
| if seed == -1: | |
| seed = random.randint(0, 65535) | |
| seed_everything(seed) | |
| self.model.to('cpu') | |
| self.conditioner.to('cpu') | |
| # stage 1: encode/decode/encode | |
| self.first_stage_model.to(device) | |
| _z = self.encode_first_stage_with_denoise(x, use_sample=False) | |
| x_stage1 = self.decode_first_stage(_z) | |
| z_stage1 = self.encode_first_stage(x_stage1) | |
| self.first_stage_model.to('cpu') | |
| #conditioning | |
| self.conditioner.to(device) | |
| c, uc = self.prepare_condition(_z, p, p_p, n_p, N) | |
| self.conditioner.to('cpu') | |
| denoiser = lambda input, sigma, c, control_scale: self.denoiser( | |
| self.model, input, sigma, c, control_scale, **kwargs | |
| ) | |
| noised_z = torch.randn_like(_z).to(_z.device) | |
| comfy.model_management.soft_empty_cache() | |
| #sampling | |
| self.model.diffusion_model.to(device) | |
| self.model.control_model.to(device) | |
| self.denoiser.to(device) | |
| _samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale, | |
| use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start) | |
| self.model.diffusion_model.to('cpu') | |
| self.model.control_model.to('cpu') | |
| #decoding | |
| self.first_stage_model.to(device) | |
| samples = self.decode_first_stage(_samples) | |
| self.first_stage_model.to('cpu') | |
| if color_fix_type == 'Wavelet': | |
| samples = wavelet_reconstruction(samples, x_stage1) | |
| elif color_fix_type == 'AdaIn': | |
| samples = adaptive_instance_normalization(samples, x_stage1) | |
| return samples | |
| def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64): | |
| self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward | |
| self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward | |
| self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward | |
| self.first_stage_model.denoise_encoder.forward = VAEHook( | |
| self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False, | |
| fast_encoder=False, color_fix=False, to_gpu=True) | |
| self.first_stage_model.encoder.forward = VAEHook( | |
| self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False, | |
| fast_encoder=False, color_fix=False, to_gpu=True) | |
| self.first_stage_model.decoder.forward = VAEHook( | |
| self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False, | |
| fast_encoder=False, color_fix=False, to_gpu=True) | |
| def prepare_condition(self, _z, p, p_p, n_p, N): | |
| batch = {} | |
| batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device) | |
| batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device) | |
| batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device) | |
| batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device) | |
| batch['control'] = _z | |
| batch_uc = copy.deepcopy(batch) | |
| batch_uc['txt'] = [n_p for _ in p] | |
| autocast_condition = (self.model.dtype == torch.float16 or self.model.dtype == torch.bfloat16) and not comfy.model_management.is_device_mps(device) | |
| if not isinstance(p[0], list): | |
| print("Using local prompt: ") | |
| batch['txt'] = [''.join([_p, p_p]) for _p in p] | |
| print(batch['txt']) | |
| with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=self.model.dtype) if autocast_condition else nullcontext(): | |
| c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc) | |
| else: | |
| print("Using tile prompts") | |
| assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.' | |
| p_tiles = p[0] | |
| c = [] | |
| for i, p_tile in enumerate(p_tiles): | |
| batch['txt'] = [''.join([p_tile, p_p])] | |
| with torch.autocast(comfy.model_management.get_autocast_device(device), dtype=self.model.dtype) if autocast_condition else nullcontext(): | |
| if i == 0: | |
| _c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc) | |
| else: | |
| _c, _ = self.conditioner.get_unconditional_conditioning(batch, None) | |
| c.append(_c) | |
| return c, uc |