Spaces:
Configuration error
Configuration error
| import torch | |
| import math | |
| import torch.nn.functional as F | |
| from comfy.ldm.modules.attention import optimized_attention | |
| from .utils import tensor_to_size | |
| class Attn2Replace: | |
| def __init__(self, callback=None, **kwargs): | |
| self.callback = [callback] | |
| self.kwargs = [kwargs] | |
| def add(self, callback, **kwargs): | |
| self.callback.append(callback) | |
| self.kwargs.append(kwargs) | |
| for key, value in kwargs.items(): | |
| setattr(self, key, value) | |
| def __call__(self, q, k, v, extra_options): | |
| dtype = q.dtype | |
| out = optimized_attention(q, k, v, extra_options["n_heads"]) | |
| sigma = extra_options["sigmas"].detach().cpu()[0].item() if 'sigmas' in extra_options else 999999999.9 | |
| for i, callback in enumerate(self.callback): | |
| if sigma <= self.kwargs[i]["sigma_start"] and sigma >= self.kwargs[i]["sigma_end"]: | |
| out = out + callback(out, q, k, v, extra_options, **self.kwargs[i]) | |
| return out.to(dtype=dtype) | |
| def instantid_attention(out, q, k, v, extra_options, module_key='', ipadapter=None, weight=1.0, cond=None, cond_alt=None, uncond=None, weight_type="linear", mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False, embeds_scaling='V only', **kwargs): | |
| dtype = q.dtype | |
| cond_or_uncond = extra_options["cond_or_uncond"] | |
| block_type = extra_options["block"][0] | |
| #block_id = extra_options["block"][1] | |
| t_idx = extra_options["transformer_index"] | |
| layers = 11 if '101_to_k_ip' in ipadapter.ip_layers.to_kvs else 16 | |
| k_key = module_key + "_to_k_ip" | |
| v_key = module_key + "_to_v_ip" | |
| # extra options for AnimateDiff | |
| ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None | |
| b = q.shape[0] | |
| seq_len = q.shape[1] | |
| batch_prompt = b // len(cond_or_uncond) | |
| _, _, oh, ow = extra_options["original_shape"] | |
| if weight_type == 'ease in': | |
| weight = weight * (0.05 + 0.95 * (1 - t_idx / layers)) | |
| elif weight_type == 'ease out': | |
| weight = weight * (0.05 + 0.95 * (t_idx / layers)) | |
| elif weight_type == 'ease in-out': | |
| weight = weight * (0.05 + 0.95 * (1 - abs(t_idx - (layers/2)) / (layers/2))) | |
| elif weight_type == 'reverse in-out': | |
| weight = weight * (0.05 + 0.95 * (abs(t_idx - (layers/2)) / (layers/2))) | |
| elif weight_type == 'weak input' and block_type == 'input': | |
| weight = weight * 0.2 | |
| elif weight_type == 'weak middle' and block_type == 'middle': | |
| weight = weight * 0.2 | |
| elif weight_type == 'weak output' and block_type == 'output': | |
| weight = weight * 0.2 | |
| elif weight_type == 'strong middle' and (block_type == 'input' or block_type == 'output'): | |
| weight = weight * 0.2 | |
| elif isinstance(weight, dict): | |
| if t_idx not in weight: | |
| return 0 | |
| weight = weight[t_idx] | |
| if cond_alt is not None and t_idx in cond_alt: | |
| cond = cond_alt[t_idx] | |
| del cond_alt | |
| if unfold_batch: | |
| # Check AnimateDiff context window | |
| if ad_params is not None and ad_params["sub_idxs"] is not None: | |
| if isinstance(weight, torch.Tensor): | |
| weight = tensor_to_size(weight, ad_params["full_length"]) | |
| weight = torch.Tensor(weight[ad_params["sub_idxs"]]) | |
| if torch.all(weight == 0): | |
| return 0 | |
| weight = weight.repeat(len(cond_or_uncond), 1, 1) # repeat for cond and uncond | |
| elif weight == 0: | |
| return 0 | |
| # if image length matches or exceeds full_length get sub_idx images | |
| if cond.shape[0] >= ad_params["full_length"]: | |
| cond = torch.Tensor(cond[ad_params["sub_idxs"]]) | |
| uncond = torch.Tensor(uncond[ad_params["sub_idxs"]]) | |
| # otherwise get sub_idxs images | |
| else: | |
| cond = tensor_to_size(cond, ad_params["full_length"]) | |
| uncond = tensor_to_size(uncond, ad_params["full_length"]) | |
| cond = cond[ad_params["sub_idxs"]] | |
| uncond = uncond[ad_params["sub_idxs"]] | |
| else: | |
| if isinstance(weight, torch.Tensor): | |
| weight = tensor_to_size(weight, batch_prompt) | |
| if torch.all(weight == 0): | |
| return 0 | |
| weight = weight.repeat(len(cond_or_uncond), 1, 1) # repeat for cond and uncond | |
| elif weight == 0: | |
| return 0 | |
| cond = tensor_to_size(cond, batch_prompt) | |
| uncond = tensor_to_size(uncond, batch_prompt) | |
| k_cond = ipadapter.ip_layers.to_kvs[k_key](cond) | |
| k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond) | |
| v_cond = ipadapter.ip_layers.to_kvs[v_key](cond) | |
| v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond) | |
| else: | |
| # TODO: should we always convert the weights to a tensor? | |
| if isinstance(weight, torch.Tensor): | |
| weight = tensor_to_size(weight, batch_prompt) | |
| if torch.all(weight == 0): | |
| return 0 | |
| weight = weight.repeat(len(cond_or_uncond), 1, 1) # repeat for cond and uncond | |
| elif weight == 0: | |
| return 0 | |
| k_cond = ipadapter.ip_layers.to_kvs[k_key](cond).repeat(batch_prompt, 1, 1) | |
| k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond).repeat(batch_prompt, 1, 1) | |
| v_cond = ipadapter.ip_layers.to_kvs[v_key](cond).repeat(batch_prompt, 1, 1) | |
| v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond).repeat(batch_prompt, 1, 1) | |
| ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) | |
| ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) | |
| if embeds_scaling == 'K+mean(V) w/ C penalty': | |
| scaling = float(ip_k.shape[2]) / 1280.0 | |
| weight = weight * scaling | |
| ip_k = ip_k * weight | |
| ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True) | |
| ip_v = (ip_v - ip_v_mean) + ip_v_mean * weight | |
| out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | |
| del ip_v_mean | |
| elif embeds_scaling == 'K+V w/ C penalty': | |
| scaling = float(ip_k.shape[2]) / 1280.0 | |
| weight = weight * scaling | |
| ip_k = ip_k * weight | |
| ip_v = ip_v * weight | |
| out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | |
| elif embeds_scaling == 'K+V': | |
| ip_k = ip_k * weight | |
| ip_v = ip_v * weight | |
| out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | |
| else: | |
| #ip_v = ip_v * weight | |
| out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | |
| out_ip = out_ip * weight # I'm doing this to get the same results as before | |
| if mask is not None: | |
| mask_h = oh / math.sqrt(oh * ow / seq_len) | |
| mask_h = int(mask_h) + int((seq_len % int(mask_h)) != 0) | |
| mask_w = seq_len // mask_h | |
| # check if using AnimateDiff and sliding context window | |
| if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None): | |
| # if mask length matches or exceeds full_length, get sub_idx masks | |
| if mask.shape[0] >= ad_params["full_length"]: | |
| mask = torch.Tensor(mask[ad_params["sub_idxs"]]) | |
| mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | |
| else: | |
| mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | |
| mask = tensor_to_size(mask, ad_params["full_length"]) | |
| mask = mask[ad_params["sub_idxs"]] | |
| else: | |
| mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | |
| mask = tensor_to_size(mask, batch_prompt) | |
| mask = mask.repeat(len(cond_or_uncond), 1, 1) | |
| mask = mask.view(mask.shape[0], -1, 1).repeat(1, 1, out.shape[2]) | |
| # covers cases where extreme aspect ratios can cause the mask to have a wrong size | |
| mask_len = mask_h * mask_w | |
| if mask_len < seq_len: | |
| pad_len = seq_len - mask_len | |
| pad1 = pad_len // 2 | |
| pad2 = pad_len - pad1 | |
| mask = F.pad(mask, (0, 0, pad1, pad2), value=0.0) | |
| elif mask_len > seq_len: | |
| crop_start = (mask_len - seq_len) // 2 | |
| mask = mask[:, crop_start:crop_start+seq_len, :] | |
| out_ip = out_ip * mask | |
| #out = out + out_ip | |
| return out_ip.to(dtype=dtype) | |