Spaces:
Configuration error
Configuration error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import cv2 | |
| import numpy as np | |
| from .dw_onnx.cv_ox_det import inference_detector as inference_onnx_yolox | |
| from .dw_onnx.cv_ox_yolo_nas import inference_detector as inference_onnx_yolo_nas | |
| from .dw_onnx.cv_ox_pose import inference_pose as inference_onnx_pose | |
| from .dw_torchscript.jit_det import inference_detector as inference_jit_yolox | |
| from .dw_torchscript.jit_pose import inference_pose as inference_jit_pose | |
| from typing import List, Optional | |
| from .types import PoseResult, BodyResult, Keypoint | |
| from timeit import default_timer | |
| import os | |
| from custom_controlnet_aux.dwpose.util import guess_onnx_input_shape_dtype, get_model_type, get_ort_providers, is_model_torchscript | |
| import torch | |
| class Wholebody: | |
| def __init__(self, det_model_path: Optional[str] = None, pose_model_path: Optional[str] = None, torchscript_device="cuda"): | |
| self.det_filename = det_model_path and os.path.basename(det_model_path) | |
| self.pose_filename = pose_model_path and os.path.basename(pose_model_path) | |
| self.det, self.pose = None, None | |
| # return type: None ort cv2 torchscript | |
| self.det_model_type = get_model_type("DWPose",self.det_filename) | |
| self.pose_model_type = get_model_type("DWPose",self.pose_filename) | |
| # Always loads to CPU to avoid building OpenCV. | |
| cv2_device = 'cpu' | |
| cv2_backend = cv2.dnn.DNN_BACKEND_OPENCV if cv2_device == 'cpu' else cv2.dnn.DNN_BACKEND_CUDA | |
| # You need to manually build OpenCV through cmake to work with your GPU. | |
| cv2_providers = cv2.dnn.DNN_TARGET_CPU if cv2_device == 'cpu' else cv2.dnn.DNN_TARGET_CUDA | |
| ort_providers = get_ort_providers() | |
| if self.det_model_type is None: | |
| pass | |
| elif self.det_model_type == "ort": | |
| try: | |
| import onnxruntime as ort | |
| self.det = ort.InferenceSession(det_model_path, providers=ort_providers) | |
| except: | |
| print(f"Failed to load onnxruntime with {self.det.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
| self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
| elif self.det_model_type == "cv2": | |
| try: | |
| self.det = cv2.dnn.readNetFromONNX(det_model_path) | |
| self.det.setPreferableBackend(cv2_backend) | |
| self.det.setPreferableTarget(cv2_providers) | |
| except: | |
| print("TopK operators may not work on your OpenCV, try use onnxruntime with CPUExecutionProvider") | |
| try: | |
| import onnxruntime as ort | |
| self.det = ort.InferenceSession(det_model_path, providers=["CPUExecutionProvider"]) | |
| except: | |
| print(f"Failed to load {det_model_path}, you can use other models instead") | |
| else: | |
| self.det = torch.jit.load(det_model_path) | |
| self.det.to(torchscript_device) | |
| if self.pose_model_type is None: | |
| pass | |
| elif self.pose_model_type == "ort": | |
| try: | |
| import onnxruntime as ort | |
| self.pose = ort.InferenceSession(pose_model_path, providers=ort_providers) | |
| except: | |
| print(f"Failed to load onnxruntime with {self.pose.get_providers()}.\nPlease change EP_list in the config.yaml and restart ComfyUI") | |
| self.pose = ort.InferenceSession(pose_model_path, providers=["CPUExecutionProvider"]) | |
| elif self.pose_model_type == "cv2": | |
| self.pose = cv2.dnn.readNetFromONNX(pose_model_path) | |
| self.pose.setPreferableBackend(cv2_backend) | |
| self.pose.setPreferableTarget(cv2_providers) | |
| else: | |
| self.pose = torch.jit.load(pose_model_path) | |
| self.pose.to(torchscript_device) | |
| if self.pose_filename is not None: | |
| self.pose_input_size, _ = guess_onnx_input_shape_dtype(self.pose_filename) | |
| def __call__(self, oriImg) -> Optional[np.ndarray]: | |
| #Sacrifice accurate time measurement for compatibility | |
| det_start = default_timer() | |
| if is_model_torchscript(self.det): | |
| det_result = inference_jit_yolox(self.det, oriImg, detect_classes=[0]) | |
| else: | |
| if "yolox" in self.det_filename: | |
| det_result = inference_onnx_yolox(self.det, oriImg, detect_classes=[0], dtype=np.float32) | |
| else: | |
| #FP16 and INT8 YOLO NAS accept uint8 input | |
| det_result = inference_onnx_yolo_nas(self.det, oriImg, detect_classes=[0], dtype=np.uint8) | |
| print(f"DWPose: Bbox {((default_timer() - det_start) * 1000):.2f}ms") | |
| if (det_result is None) or (det_result.shape[0] == 0): | |
| return None | |
| pose_start = default_timer() | |
| if is_model_torchscript(self.pose): | |
| keypoints, scores = inference_jit_pose(self.pose, det_result, oriImg, self.pose_input_size) | |
| else: | |
| _, pose_onnx_dtype = guess_onnx_input_shape_dtype(self.pose_filename) | |
| keypoints, scores = inference_onnx_pose(self.pose, det_result, oriImg, self.pose_input_size, dtype=pose_onnx_dtype) | |
| print(f"DWPose: Pose {((default_timer() - pose_start) * 1000):.2f}ms on {det_result.shape[0]} people\n") | |
| keypoints_info = np.concatenate( | |
| (keypoints, scores[..., None]), axis=-1) | |
| # compute neck joint | |
| neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
| # neck score when visualizing pred | |
| neck[:, 2:4] = np.logical_and( | |
| keypoints_info[:, 5, 2:4] > 0.3, | |
| keypoints_info[:, 6, 2:4] > 0.3).astype(int) | |
| new_keypoints_info = np.insert( | |
| keypoints_info, 17, neck, axis=1) | |
| mmpose_idx = [ | |
| 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 | |
| ] | |
| openpose_idx = [ | |
| 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 | |
| ] | |
| new_keypoints_info[:, openpose_idx] = \ | |
| new_keypoints_info[:, mmpose_idx] | |
| keypoints_info = new_keypoints_info | |
| return keypoints_info | |
| def format_result(keypoints_info: Optional[np.ndarray]) -> List[PoseResult]: | |
| def format_keypoint_part( | |
| part: np.ndarray, | |
| ) -> Optional[List[Optional[Keypoint]]]: | |
| keypoints = [ | |
| Keypoint(x, y, score, i) if score >= 0.3 else None | |
| for i, (x, y, score) in enumerate(part) | |
| ] | |
| return ( | |
| None if all(keypoint is None for keypoint in keypoints) else keypoints | |
| ) | |
| def total_score(keypoints: Optional[List[Optional[Keypoint]]]) -> float: | |
| return ( | |
| sum(keypoint.score for keypoint in keypoints if keypoint is not None) | |
| if keypoints is not None | |
| else 0.0 | |
| ) | |
| pose_results = [] | |
| if keypoints_info is None: | |
| return pose_results | |
| for instance in keypoints_info: | |
| body_keypoints = format_keypoint_part(instance[:18]) or ([None] * 18) | |
| left_hand = format_keypoint_part(instance[92:113]) | |
| right_hand = format_keypoint_part(instance[113:134]) | |
| face = format_keypoint_part(instance[24:92]) | |
| # Openpose face consists of 70 points in total, while DWPose only | |
| # provides 68 points. Padding the last 2 points. | |
| if face is not None: | |
| # left eye | |
| face.append(body_keypoints[14]) | |
| # right eye | |
| face.append(body_keypoints[15]) | |
| body = BodyResult( | |
| body_keypoints, total_score(body_keypoints), len(body_keypoints) | |
| ) | |
| pose_results.append(PoseResult(body, left_hand, right_hand, face)) | |
| return pose_results |