Spaces:
Configuration error
Configuration error
| # MangaLineExtraction_PyTorch | |
| # https://github.com/ljsabc/MangaLineExtraction_PyTorch | |
| #NOTE: This preprocessor is designed to work with lineart_anime ControlNet so the result will be white lines on black canvas | |
| import torch | |
| import numpy as np | |
| import os | |
| import cv2 | |
| from einops import rearrange | |
| from .model_torch import res_skip | |
| from PIL import Image | |
| import warnings | |
| from custom_controlnet_aux.util import HWC3, resize_image_with_pad, common_input_validate, custom_hf_download, HF_MODEL_NAME | |
| class LineartMangaDetector: | |
| def __init__(self, model): | |
| self.model = model | |
| self.device = "cpu" | |
| def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="erika.pth"): | |
| model_path = custom_hf_download(pretrained_model_or_path, filename) | |
| net = res_skip() | |
| ckpt = torch.load(model_path) | |
| for key in list(ckpt.keys()): | |
| if 'module.' in key: | |
| ckpt[key.replace('module.', '')] = ckpt[key] | |
| del ckpt[key] | |
| net.load_state_dict(ckpt) | |
| net.eval() | |
| return cls(net) | |
| def to(self, device): | |
| self.model.to(device) | |
| self.device = device | |
| return self | |
| def __call__(self, input_image, detect_resolution=512, output_type="pil", upscale_method="INTER_CUBIC", **kwargs): | |
| input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
| detected_map, remove_pad = resize_image_with_pad(input_image, 256 * int(np.ceil(float(detect_resolution) / 256.0)), upscale_method) | |
| img = cv2.cvtColor(detected_map, cv2.COLOR_RGB2GRAY) | |
| with torch.no_grad(): | |
| image_feed = torch.from_numpy(img).float().to(self.device) | |
| image_feed = rearrange(image_feed, 'h w -> 1 1 h w') | |
| line = self.model(image_feed) | |
| line = line.cpu().numpy()[0,0,:,:] | |
| line[line > 255] = 255 | |
| line[line < 0] = 0 | |
| line = line.astype(np.uint8) | |
| detected_map = HWC3(line) | |
| detected_map = remove_pad(255 - detected_map) | |
| if output_type == "pil": | |
| detected_map = Image.fromarray(detected_map) | |
| return detected_map | |