Spaces:
Configuration error
Configuration error
| # ------------------------------------------------------------------------- | |
| # MIT License | |
| # | |
| # Copyright (c) 2021 OpenAI | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # | |
| # Modified by Jiarui Xu | |
| # ------------------------------------------------------------------------- | |
| import gzip | |
| import html | |
| import os | |
| from functools import lru_cache | |
| import ftfy | |
| import regex as re | |
| import torch | |
| def default_bpe(): | |
| return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'bpe_simple_vocab_16e6.txt.gz') | |
| def bytes_to_unicode(): | |
| """Returns list of utf-8 byte and a corresponding list of unicode strings. | |
| The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab | |
| if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent | |
| coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables | |
| between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. | |
| """ | |
| bs = list(range(ord('!'), ord('~') + 1)) + list(range(ord('¡'), ord('¬') + 1)) + list(range(ord('®'), ord('ÿ') + 1)) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2**8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2**8 + n) | |
| n += 1 | |
| cs = [chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| def get_pairs(word): | |
| """Return set of symbol pairs in a word. | |
| Word is represented as tuple of symbols (symbols being variable-length strings). | |
| """ | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| return pairs | |
| def basic_clean(text): | |
| text = ftfy.fix_text(text) | |
| text = html.unescape(html.unescape(text)) | |
| return text.strip() | |
| def whitespace_clean(text): | |
| text = re.sub(r'\s+', ' ', text) | |
| text = text.strip() | |
| return text | |
| class Tokenize: | |
| def __init__(self, tokenizer, max_seq_len=77, truncate=True): | |
| self.tokenizer = tokenizer | |
| self.max_seq_len = max_seq_len | |
| self.truncate = truncate | |
| def __call__(self, texts): | |
| expanded_dim = False | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| expanded_dim = True | |
| sot_token = self.tokenizer.encoder['<|startoftext|>'] | |
| eot_token = self.tokenizer.encoder['<|endoftext|>'] | |
| all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts] | |
| result = torch.zeros(len(all_tokens), self.max_seq_len, dtype=torch.long) | |
| for i, tokens in enumerate(all_tokens): | |
| if len(tokens) > self.max_seq_len: | |
| if self.truncate: | |
| tokens = tokens[:self.max_seq_len] | |
| tokens[-1] = eot_token | |
| else: | |
| raise RuntimeError(f'Input {texts[i]} is too long for context length {self.max_seq_len}') | |
| result[i, :len(tokens)] = torch.tensor(tokens) | |
| if expanded_dim: | |
| return result[0] | |
| return result | |
| class SimpleTokenizer(object): | |
| def __init__(self, bpe_path: str = default_bpe()): | |
| self.byte_encoder = bytes_to_unicode() | |
| self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
| merges = gzip.open(bpe_path).read().decode('utf-8').split('\n') | |
| merges = merges[1:49152 - 256 - 2 + 1] | |
| merges = [tuple(merge.split()) for merge in merges] | |
| vocab = list(bytes_to_unicode().values()) | |
| vocab = vocab + [v + '</w>' for v in vocab] | |
| for merge in merges: | |
| vocab.append(''.join(merge)) | |
| vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |
| self.encoder = dict(zip(vocab, range(len(vocab)))) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
| self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |
| self.pat = re.compile( | |
| r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", | |
| re.IGNORECASE) | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token[:-1]) + (token[-1] + '</w>', ) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token + '</w>' | |
| while True: | |
| bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| new_word.extend(word[i:j]) | |
| i = j | |
| except: # noqa: E722 | |
| new_word.extend(word[i:]) | |
| break | |
| if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
| new_word.append(first + second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = ' '.join(word) | |
| self.cache[token] = word | |
| return word | |
| def encode(self, text): | |
| bpe_tokens = [] | |
| text = whitespace_clean(basic_clean(text)).lower() | |
| for token in re.findall(self.pat, text): | |
| token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
| bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
| return bpe_tokens | |
| def decode(self, tokens): | |
| text = ''.join([self.decoder[token] for token in tokens]) | |
| text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors='replace').replace('</w>', ' ') | |
| return text |